Отримано аналітичний вираз, який визначає характер та ступінь впливу структури вимірюваного потоку на покази МГД ЛМП:
На основі аналізу одержаного виразу (7) синтезовано МГД ЛМП з високими метрологічними характеристиками для трубопроводів великих діаметрів.
У третьому розділі розглянуто питання синтезу МГД ЛМП – питання визначення їх оптимальних параметрів, при яких такі ЗВТ забезпечували б вимірювання витрати у трубопроводах великих діаметрів з нормованими метрологічними характеристиками.
Розглянуто основні фактори, які впливають на метрологічні характеристики МГД ЛМП. Це – завантаження вимірювального перетину трубопроводу перетворювачем та поперечний градієнт швидкості.
Розрахунок оптимальних параметрів r та l (рис.1) котушки збудження магнітного поля МГД ЛМП, при яких d (l, r) << 1 (5,7), за рахунок чого залежність показів таких перетворювачів від поперечного градієнта швидкості (4) буде зведено до придатного мінімуму, виконано згідно з отриманим у другому розділі рішенням задачі синтезу (4,7) для різних значень r та l. Встановлено, що оптимальним є відношення l/r = 0,5 та r Ј 32 мм при Dу і 300 мм. При цьому похибка вимірювання витрати буде знаходитися на рівні ± 1,0 %.
Розглянуто конструкцію МГД ЛМП. Показано, що для живлення магнітної системи МГД ЛМП використовується змінний (імпульсний) струм, що дає змогу виключити вплив електрохімічних та поляризаційних ефектів на результати вимірювання. Локалізація магнітного поля дає змогу створювати у робочій області перетворювача магнітне поле значної напруженості (В ~ 0,1 Тл), за рахунок чого підвищується чутливість, розширюється робочий діапазон вимірювача від часток сантиметрів до десятків метрів.
У відповідності до отриманих результатів теоретичних досліджень розроблено та виготовлено експериментальні зразки МГД ЛМП.
Процес вимірювання витрати розробленими МГД ЛМП засновано на закономірностях турбулентної течії в трубах, згідно з якими швидкість потоку у визначеній точці перетину трубопроводу пропорційна середній швидкості потоку та зводиться до вимірювання середньої швидкості у точці (0,242±0,013)R (точці середньої швидкості) згідно з ГОСТ 8.361, де R – внутрішній радіус трубопроводу у вимірювальному перетині, тобто
де V = Vср – місцева швидкість, w - площа поперечного перетину трубопроводу, визначена з високою точністю.
У четвертому розділі наводяться результати експериментальних досліджень розробленого ЕМВ, метою яких є підтвердження коректності постановки і розв'язання задачі синтезу МГД ЛМП для трубопроводів великих діаметрів, справедливості отриманих розрахункових алгоритмів, положень, висновків і доказ того, що розроблений на основі отриманих результатів прилад має лінійну градуювальну характеристику і нормовані метрологічні характеристики.
Експериментальні дослідження метрологічних характеристик ЕМВ у силу специфіки фізичних процесів, що протікають у магнітогідродинамічному перетворювачі при взаємодії його локального магнітного поля з вимірюваним потоком рідини, можуть бути проведені тільки в реальних умовах – в потоці рідини.
У зв'язку з цим дослідження метрологічних характеристик ЕМВ ЛМП здійснювалися двома способами: у спокійному середовищі при переміщенні вимірювального перетворювача та в потоку, що набігає, при нерухомому вимірювальному перетворювачі, оскільки перетворювачі, що розглядаються, вимірюють швидкість прямування рідини як функцію витрати. У першому випадку дослідженняпроводилися на спеціальній градуювально-випробувальній установці СГИУ-1, основна відносна похибка якої 0,3 %, тобто в умовах, що виключають наявність градієнтів швидкості, у другому – на робочому еталоні витрати РОУ-180 – витратомірнійустановці, відносна похибка якої не перевищує 0,25 %, тобто у реальних умовах роботи витратомірів.
Розроблено методику експериментальних досліджень, згідно з якою: визначено градуювальну характеристику та похибку вимірювань витрати рідини за допомогою розробленого ЕМВ.
Експериментальні дослідження показали, що розроблений прилад має лінійну градуювальну характеристику (рис. 3). Відносна похибка вимірювання витрати рідини у діапазоні від 12,0 до 124,0 м3/г (при Ду = 200 мм) складає 1,0 %. Результати досліджень дають змогу зробити висновок щодо можливості проведення повірки та атестації цих приладів на вимірювальних лотках – установках типа СГИУ-1.
ВИСНОВКИ
Важливість проблеми метрологічного забезпечення і, зокрема, розробки і створення сучасних ЗВТ обліку й ефективного використання водних ресурсів очевидна і постає дуже актуальною для економіки України.
На основі нових науково обгрунтованих теоретичних і експериментальних результатів, одержаних в дисертації, вирішено конкретне наукове завдання – створення сучасного, що відповідає вимогам сьогодення, компактного електромагнітного витратоміра для трубопроводів великих діаметрів (d і 300 мм), що має високі метрологічні характеристики, малі металоємність і енерговитрати, а також зручність в експлуатації, на основі магнітогідродинамічного перетворювача з локальним магнітним полем – яке має суттєве значення для розвитку приладобудування і особливо для створення приладів обліку витрати рідини у трубопроводах великих діаметрів.
Основні результати роботи полягають в такому:
1.Розглянуто особливості роботи і математичну модель МГД ЛМП у трубопроводах великих діаметрів, що базується на системі рівнянь магнітної гідродинаміки і відповідних граничних умовах.
2.Сформульовано і вирішено задачу синтезу електромагнітного витратоміра для трубопроводів великих діаметрів, що дозволила одержати нові теоретичні результати, тобто визначити оптимальні характеристики МГД ЛМП, які є суттєвими для розвитку напрямку створення електромагнітних витратомірів для трубопроводів великих діаметрів.
3.На підставі виконаних експериментальних досліджень встановлено граничні умови, які дозволили замкнути задачу Неймана для рівняння Лапласа, що описує розподіл магнітного поля МГД ЛМП.
4.Розроблено методику високоточного встановлення в аналітичному вигляді розподілу магнітного поля розсіяння МГД ЛМП у вимірюваному середовищі в залежності від параметрів магнітної системи перетворювача, яка є основоположною при розробці електромагнітних витратомірів з локальним магнітним полем.
5.Вперше отримано аналітичні вирази, які визначають характер і ступінь впливу структури вимірюваного потоку на покази МГД ЛМП, на основі яких за рахунок вибору оптимальних параметрів магнітної системи перетворювача залежність показів ЕМВ від градієнта швидкості вимірюваного середовища зведено до заздалегідь заданої прийнятноївеличини.
6.Визначено оптимальні геометричні та конструктивні параметри МГД ЛМП, при яких розроблювані ЕМВ забезпечують вимірювання витрати рідинних середовищ в трубопроводах великих діаметрів з похибкою порядку 1,0 %.
7.На підставі результатів виконаних теоретичних досліджень розроблено та виготовлено експериментальні зразки МГД ЛМП для трубопроводів великих діаметрів.
8.Розроблено методику та проведено експериментальні дослідження створених ЕМВ для трубопроводів великих діаметрів, які підтвердили достовірність теоретичних результатів, висновків, положень, розрахункових формул, правильність вибору методу і напрямку конструктивного виконання магнітогідродинамічних перетворювачів витрати з локальним магнітним полем; дали змогу зробити висновок, що створені витратоміри мають лінійну градуювальну характеристику та похибку вимірювання витрати рідини не більше 1,0 %, що знаходиться на рівні кращих серійно виготовлених витратомірів для трубопроводів малих та середніх діаметрів.
Отримані в роботі результати використано при створенні МГД ЛМП ИСП-204, які пройшли державні приймальні і контрольні випробування і занесені до Державного реєстру засобів вимірювальної техніки, допущених до застосування в Україні.
9.Наведено приклади практичного застосування отриманих результатів та висновків дисертаційної роботи, створених електромагнітних витратомірів для трубопроводів великих діаметрів в гідрометричній практиці України.
СПИСОК НАУКОВИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ
1.Себко В.В., Машнева И.В., Багмет О.Л., Москаленко И.И. Расчет характеристик электромагнитного преобразователя температуры //Измерительная техника. – 1997. - №1. – С.53-56.
Автором проведені чисельні розрахунки основних характеристик електромагнітного перетворювача.
2.Себко В.П., Москаленко И.И., Сиренко Н.Н., Машнева И.В. Бесконтактное определение трех параметров цилиндрического проводящего изделия //Измерительная техника.-1997.-№2.-С.37-40.
Автор провів дослідження параметрів циліндричного виробу за допомогою електромагнітного перетворювача.
3.Большаков В.Б., Косач Н.И., Марфенко И.В., Панфилов О.Ф. Электромагнитный метод измерения скорости жидкостных потоков //Український метрологічний журнал.-1997.-Вип.4.-С.43-46.
Автору належить рішення задачі синтезу циліндричних МГД вимірювачів і знаходження оптимальних метрологічних і конструктивних параметрів для трубопроводів великих діаметрів.
4.Большаков В.Б., Косач Н.И., Марфенко И.В., Несвитайло В.А., Соколов Г.С., Панфилов О.Ф. Зависимость показаний электромагнитных расходомеров от физико-химических свойств измеряемой среды //Український метрологічний журнал.-1998.-Вип.2.-С.46-49.
Автором розглянуто і проаналізовано залежності показів електромагнітних перетворювачів від електропровідності середовища.
5.Марфенко И.В. Магнитное поле рассеяния МГД измерителя с цилиндрической магнитной системой //Вестник Харьковского государственного политехнического университета.-1998.-Вып.14.-С.33-37.