Пристрій працездатний і на постійному струмі.
Мал. 6. Схема релейного пристрою захисту від перенапруження з самоблокуванням
Пристрій захисту від перенапруження (мал. 6) вигідно відрізняється від попередніх тим, що в нім не відбувається необоротного пошкодження елементу захисту. Замість цього при напрузі понад 14,1 В пробивається ланцюжок стабілітронів Vd1 - Vd3, включається і самоблокується тиристор Vs1, спрацьовує реле К1 і своїми контактами відключає ланцюг навантаження.
Відновити початковий стан пристрою захисту можна тільки після втручання оператора - для цього слід натиснути на кнопку Sb1. Пристрій також переходить в робочий режим, що чекає, після короткочасного відключення джерела живлення. До недоліків даного пристрою захисту належить його висока чутливість до короткочасних перенапружень.
Пристрій (патент DL-WR 82992), принципова схема якого приведена на мал. 7, може застосовуватися для захисту навантаження від неприпустимо високої вихідної напруги. У нормальних умовах транзистор Vt1 працює в режимі, коли напруга між його колектором і емітером невелика, і на транзисторі розсівається невелика потужність (струм бази визначається резистором R1). Опір стабілітрона Vd2 в цьому випадку велике і тиристор Vs1 закритий.
Мал. 7. Схема напівпровідникового реле захисту навантаження від перенапруження
При зростанні напруги на виході пристрою вище певної величини через стабілітрон починає протікати струм, який приводить до відкриття тиристора. Транзистор Vt1 при цьому закривається, і напруга на виході пристрою стає близько до нуля. Відключити захист можна тільки відключенням джерела живлення.
Описаний пристрій повинен включатися у вихідний ланцюг стабілізаторів так, щоб сигнал зворотного зв'язку подавався з ланцюга, розташованого за системою захисту. При номінальній вихідній напрузі 12 В і струмі 1 А в пристрої можна застосувати транзистор Кт802а, тиристор Ку201а - Ку201к, стабілітрон - Д814б. Опір резистора R1 повинен бути 39 Ом (потужність розсіювання за відсутності системи автоматики, що відключає стабілізатор від мережі, складає 10 Вт), R2 - 200 Ом, R3 - 1 ком.
3 СУЧАСНИЙ СТАН ПРОБЛЕМИ ЗАХИСТУ СПОЖИВАЧІВ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ І СПОСОБИ ЇЇ РІШЕННЯ
3.1 Робота мереж 6-35 кВ в даний час
Розподільні мережі 6-35 кВ є найпротяжнішими з найбільш важким режимом роботи електроустаткування. Тому від надійності їх роботи значною мірою залежить безаварійність електропостачання споживачів і експлуатаційна гнучкість функціонування енергосистеми в цілому, що особливо актуально в умовах постійного технічного стану мереж, що погіршується, із-за сильної зношеності ізоляції електроустаткування. Розподільні мережі 6-35 кВ забезпечують електропостачання споживачів крупних промислових об'єктів, споживачів власних потреб електростанцій, сільськогосподарських споживачів, підприємств гірничодобувної промисловості, об'єктів комунального господарства і так далі Для живлення споживачів на кожній підстанції встановлено не менше двох триобмоткових трансформаторів потужністю в межах від 16 МВА до сотень МВА і напругою 35-220 кВ. Від вторинних обмоток цих трансформаторів напругою 6-35 кВ харчуються секції шин закритих розподільних пристроїв.
По конструктивного виконання розподільні мережі 6-35 кВ в переважній більшості випадків в межах до 15% від загальної протяжності виконані повітрям, до 2-5% – змішані легко-кабельні мережі, а велика частина з них є кабельними мережами. Промислове і комунальне навантаження, як правило, добре резервується, з цією метою на розподільні пункти (РП) заводяться частіше два введення – один на кожну секцію шин розподільного пункту. В окремих випадках друге введення прокладається від іншої секції РП або навіть від іншого РП. У зв'язку з цим струм однофазного замикання на землю (ОЗЗ) в анормальних режимах, коли включаються міжсекційні масляні вимикачі або підключаються другі резервні введення, може, різко зрости. В цілому параметри ділянок мереж по струму замикання можуть мінятися в широких межах від 50% до 100% в нормальному режимі і до 200% в режимі підключення інших секцій РП на один силовий трансформатор. В цілому величина струму замикання на шинах окремих РП може зміняться в межах від 1,5 А для повітряних ділянок мережі і до 200А на окремих ділянках кабельних мереж. Найбільш широко спостережувані значення струму замикання, які характерні для переважного числа підстанцій промислового призначення, лежить в межах 40-70 А.
Розподільні мережі 6-35 кВ працюють в режимі з ізольованою нейтраллю[1,2]. Контроль стану ізоляції здійснюється за допомогою трансформатора напруги типу НТМІ-6. В даний час при замиканні на землю в мережі 6 кВ спрацьовує захист, виконаний на реле максимальної напруги, підключений до розімкненого трикутника ТН, що є фільтром напруги нульової послідовності. Даний захист діє на сигнал, а пошук пошкодженого елементу мережі здійснюється шляхом почергового відключення приєднань. Окрім цього на приєднаннях мережі від однофазних замикань на землю передбачений струмовий захист нульової послідовності, яка підключається до трансформатора струму нульової послідовності. Проте із-за малої величини струму замикання на землю цей захист не завжди виявляється плотським при замиканні на землю або спрацьовує не селективно.
Головною перевагою мережі з ізольованою нейтраллю є те, що однофазні замикання, найбільш частий вид пошкодження, не є тут аварійним режимом і мережа, в течію до чотирьох годин, може працювати в такому режимі, що забезпечує високу надійність електропостачання споживачів при зниженні витрат на резервування. Проте в режимі однофазного замикання на землю ізоляція непошкоджених фаз може тривало знаходитися під лінійною напругою і через місце пошкодження протікає струм замикання на землю. Це може привести до руйнування ізоляції здорової фази і приведе до двофазного короткого замикання, що переведе мережу в аварійний стан.
Враховуючи вищевикладене, в даний час на передній план висувається проблема підтримки на достатньому експлуатаційному рівні працездатності мереж 6-35 кВ і максимальне продовження їх терміну служби. Одним з успішних вирішень даної проблеми є спосіб заземлення нейтралі.
3.2 Основні теорії, використовувані для аналізу перенапружень при однофазному замиканні на землю
Питанням вивчення процесів при однофазних замиканнях на землю в розподільних мережах фахівцями всіх технічно розвинених країн традиційно приділялася підвищена увага. За декілька десятиліть накопичений великий науковий і експериментальний матеріал, запропоновані заходи по захисту мереж від наслідку однофазних замикань на землю. Проте складність перехідних процесів, різноманіття впливаючих чинників і бурхливий розвиток електричних мереж постійно породжують нові проблеми, від вирішення яких цілком залежить рівень експлуатаційної надійності.
При вивченні фізичної картини процесів в трифазній електричній мережі при однофазному замиканні на землю встановлено, що кратність дугових перенапружень значною мірою визначається вільній складовій напруги в перехідному режимі[6,8,9].
Вільні коливання, накладаючись на стале значення напруги фаз мережі, приводять до виникнення перенапружень, на величину яких разом з іншими чинниками великий вплив робить характер горіння дуги в місці замикання фази на землю. У мережах з ізольованою нейтраллю при пробої ізоляції однієї з фаз на землю залежно від величини струму замикання можливі три режими горіння заземляючої дуги.
1.При вельми великому струмі дуга горить стійко, падіння напруги на дузі порівняно мало, і унаслідок великої залишкової провідності при проході струму через нуль не встигає відновлюватися скільки-небудь значна електрична міцність.
2.При достатньо малому струмі дуга горить нестійкий і після одного або декількох повторних запалень і згасань, дещо роздувшись за рахунок теплових потоків, дуга гасне остаточно, ізоляція відновлює свою електричну міцність і мережу відновлює свій нормальний режим роботи.
3.При проміжному значенні струму спостерігаються багатократні повторні згасання і запалення дуги, що супроводжуються коливальними перезарядками ємкостей мережі і перенапруженнями. Саме цей режим замикання фази на землю з переміжною дугою в умовах експлуатації супроводжується найбільшими як по величині, так і по тривалості перенапруженнями, обумовленими зсувом нейтралі системи, залишковими зарядами на ємкостях ліній при гасіннях дуги. Тому цьому режиму, що представляє найбільшу небезпеку для ізоляції електроустаткування традиційно приділялася велика увага фахівцями всіх технічно розвинених країн.
Основоположником досліджень цих перенапружень був німецький інженер Петерсен, який в 1916 році розробив теорію, що пояснює фізичну суть процесу виникнення максимальних перенапружень. Згідно цієї класичної теорії в основу розгляду процесу дугового переміжного замикання фази на землю покладено припущення про згасання дуги при проходженні через нуль струму високочастотних коливань і новому її запалення при максимумі напруги на пошкодженій фазі. При цьому цикл запалення і згасання дуги повторюється кожен напівперіод робочої частоти мережі, а максимальна напруга на фазах постійно зростає.