Смекни!
smekni.com

Захист від перенапруг (стр. 6 из 8)

У 1923 році Петерс і Слепян запропонували іншу принципово відмінну від раніше розглянутою теорію генерації дугових перенапружень. На основі проведених досліджень ними було встановлено, що дуговий проміжок не встигає скільки-небудь істотно відновити свою електричну міцність при швидкому проході через нуль високочастотних коливань. По цій гіпотезі дуговий проміжок встигає відновити свою електричну міцність і дуга згасне після загасання високочастотних коливань, коли поволі проходить через нуль порівняно невеликий струм промислової частоти, що визначається ємкістю мережі, а повторні її запалення відбуваються також при максимумі напруги на пошкодженій фазі.

Пізніше ці теорії доповнювалися різними авторами на підставі теоретичних і лабораторних досліджень відносно рівнів максимальних перенапружень і форми їх розвитку.

Обширні дослідження дугових перенапружень в мережах 6-10 кВ з ізольованою нейтраллю проведені Н.Н. Беляковим і Ч.М. Джуварли, які показали, що істотну роль в механізмі розвитку дугових перенапружень грає характер відновлення електричної міцності дугового проміжку після гасіння дуги [10,11]. Від швидкості відновлення міцності дугового проміжку залежить можлива амплітуда зсуву потенціалу всієї системи, а, отже, і можливі перенапруження. Встановлено, що зазвичай дуга намагається згаснути при кожному проході повного струму (з високочастотною складовою) через нуль. Проте при цьому порівняно швидко (з частотою власних коливань мережі) на дуговому проміжку відновлюється напруга, яка отримала спеціальну назву " пік гасіння" Uп.г., величина якого рівна подвоєному значенню Uсм – Uф, тобто:

Uп.г.=2(Uсм–Uф)

Складність процесів і многофакторность залежності перенапружень при дугових замиканнях фази на землю підтверджується також суперечністю результатів обширних досліджень, проведених за останні десятиліття фахівцями з разных країнам в різних за призначенням розподільних мережах з ізольованою і резонансно заземленою нейтраллю для оцінки реальної картини небезпеки цих перенапружень для ізоляції електроустаткування. Кінцеві результати цих робіт містять в основному суперечливі відомості про максимальних кратностях перенапружень і не розкривають фізичної суті явищ [9,12-17].

Слід також звернути увагу на той факт, що при проведенні досліджень процесів в режимі переміжних дугових замикань фази на землю завжди вважалося, що мережа симетрична, тобто не враховували те, що природно виникає в умовах експлуатації або штучно створюване в мережах з дугогасящей котушкою зсув нейтралі мережі, а також нехтували активним опором витоків через ізоляцію, припускаючи, що активна провідність значно менше ємкісної провідності мережі.

Таким чином, в умовах технічного стану мереж, що постійно погіршується, що склалися, через відсутність засобів на своєчасну заміну і якісне відновлення пошкодженого електроустаткування проблема підтримки електроустановок на достатньому експлуатаційному рівні значною мірою залежатиме від правильного розуміння умов його роботи в мережах з ослабленою ізоляцією і, зокрема, знання законів динаміки зміни параметрів і характеристик мереж у міру погіршення стану їх ізоляції і її вплив на якісні і кількісні параметри перехідних процесів при переміжних дугових замиканнях фази на землю.

3.3 Огляд існуючих методів обмеження перенапружень в мережах 6-35 Кв

Мережі однієї і тієї ж номінальної напруги при різних способах заземлення нейтралі мають ряд відмінностей в технічних і економічних показниках. Спосіб заземлення нейтралі в першу чергу впливає на величину струму замикання на землю. Тому ПУЕ всі електричні мережі, залежно від величини струму, підрозділяє на мережі з малим і мережі з великим струмом замикання на землю. Згідно прийнятим в Україні нормам мережі 6-35 кВ відносяться до мереж з малим струмом замикання на землю.


4РОЗРОБКА НА ЕОМ МАТЕМАТИЧНОЇ МОДЕЛІ МЕРЕЖІ Докучаєвського ФДК ПС 35/6 кВ "Копальнева"

4.1 Схема заміщення мережі

Для математичного моделювання схеми Докучаєвського ФДК ПС 35/6 кВ "Копальнева" (рис.1) використовуємо її схему заміщення (мал. 2).

Малюнок 2.1 - Схема Докучаєвського ФДК ПС 35/6 кВ "Копальнева"

Малюнок 2.2 - Схема заміщення Докучаєвського ФДК ПС 35/6 кВ "Копальнева"

На схемі заміщення робочий трансформатор, що є джерелом живлення, представлений фазною індуктивністю розсіяння L, активним опором R і джерелом ЕДС Е. Сеть відбита зосередженими фазною Сі і міжфазною См ємкостями, активними опорами ізоляції Rи і Rм. Трансформатор напруги, введений для обліку впливу ферорезонансних процесів в мережі, представлений фазним значенням активного опору Rт1 і нелінійною залежністю його фазної індуктивності розсіяння Lт1 від величини протікаючого струму. Два приєднання (фідери) представлено в схемі заміщення активними опорами Rпр і ємкостями Спр. Замикання фази на землю імітується активним опором дуги, що включається замість активного опору ізоляції в будь-якому місці схеми заміщення.

4.2 Диференціальні рівняння математичної моделі

Складаємо граф мережі Докучаєвського ФДК ПС 35/6 кВ "Копальнева" (рис2.3).

Малюнок 2.3 – Граф мережі Докучаєвського ФДК ПС 35/6 кВ "Копальнева"

Вузлів q = 14

Гілок р = 25

гілки дерева рд = 13

хорд рх = 12

Використовуючи побудований для схеми заміщення граф ланцюга (мал. 2.3) складаємо наступну систему диференціальних рівнянь щодо невідомих контурних струмів:

Іх=[і1,i2,i3, і4,i5,i6, і7,i8,i9, і10,i11,i12,];

i22=i19=і1+i2+i3+і4+i5+i6+і7+i8+i9+і10+i11;

i23=-i2-i3+i5+i6+i8+i9+і10+i11+i12;

i24=-i3+i6+i9+i11+і12;

i25=і1+i2+i3;

Контура: 1) 1,19,22,25; 2) 2,19,22-23,25; 3) 3,19,22-23,-24,25; 4) 4-19,-22,13; 5) 5,14-19,-22,23; 6) 6,15-19,-22,23,24; 7) 7,19-19,-22; 8) 8,17-19,-22,23; 9) 9,18-19,-22,23,24; 10) 10-19,20,-22,23; 11) 11-19,21,-22,23,24; 12) 12,23,24.

За напругу Uk, Un, Up приймаємо напругу в гілках 23,24,12 відповідно між індуктивністю і ємкістю.

R1·i1+L1·pi1+R22·i22+L22·pi22+U11+L25·pi25+R25·i25=e1;

R2·i2+L2·pi2+R22·i22+L22·pi22+U11-L23·pi23-R23·i23+L25·pi25+R25·i25-Uk=e2;

R3·i3+L3·pi3+R22·i22+L22·pi22+U11-L23·pi23-R23·i23-L24·pi24-R24·i24+L25·pi25+R25·i25-Un-Uk=e3;

U5+R4·i4+L4·pi4-R22·i22-L22·pi22-U11=0;

U6+R5·i5+L5·pi5-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk=0;

U7+R6·i6+L6·pi6-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk+L24·pi24+R24·i24+Un=0;

U8+R7·i7+L7·pi7-R22·i22-L22·pi22-U11=0;

U9+R8·i8+L8·pi8-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk=0;

U10+R9·i9+L9·pi9-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk+L24·pi24+R24·i24+Un=0;

U12+R10·i10+L10·pi10-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk=0;

U13+R11·i11+L11·pi11-R22·i22-L22·pi22-U11+L23·pi23+R23·i23+Uk+L24·pi24+R24·i24+Un=0;

Up+R12·i12+L12·pi12+L23·pi23+R23·i23+Uk+L24·pi24+R24·i24+Un=0.

Були проведені моделювання КЗ у всіх фідерах і набуті значень струмів КЗ. Результати одного з досліджень преведены в анімації.

Малюнок 2.4 - Результати КЗ в центральному фідері (анімація: число кадрів - 6, число циклів - 10)


5. Аналіз способів захисту від перенапруг.

5.1. Захист електроустаткуваня в умовах технічної експлуатації.

В умовах постійного погіршення технічного стану розподільних мереж через відсутність необхідних засобів на своєчасну заміну і якісний ремонт пошкодженого електроустаткування все гостріше стає проблема підтримки на достатньо необхідному рівні надійності роботи систем електропостачання споживачів електричної енергії. Будучи найбільш протяжними, розподільні мережі часто працюють у вельми важких умовах забруднення, зволоження, частих динамічних і термічних перевантажень, при цьому середня тривалість експлуатації більшої частини основного електроустаткування цих мереж значно перевищує нормативні терміни служби.

Все це приводить до помітного збільшення повреждаемости електроустаткування мереж по причинах різних дефектів, зокрема що розвиваються під дією експлуатаційної напруги.

Найбільшу небезпеку представляють дугові перенапруження, що виникають в мережі при переміжному (нестійкому) характері горіння дуги в місці пробою фазної ізоляції на землю. Таким чином, основним напрямом заходів щодо підвищення надійності роботи мереж середньої напруги є запобігання комутаційним і, особливо, дугових перенапружень.

У умовах, що склалися, ефективне рішення задачі істотного підвищення рівня надійності роботи розподільних мереж може бути знайдене тільки в комплексному підході до вирішення цієї проблеми.

З одного боку, необхідно йти по шляху поступової заміни електроустаткування із зношеною ізоляцією на нове, для якого більшість внутрішніх перенапружень не будуть небезпечні в такому ступені, а з іншої - прийняти заходи по граничному зниженню всіх електричних дій на ослаблену ізоляцію, створивши умови для продовження терміну експлуатації постарілого електроустаткування.

Підвищення надійності роботи розподільних мереж може бути досягнуте шляхом істотного обмеження внутрішніх перенапружень за рахунок оптимізації режиму заземлення нейтралі. Режим нейтралі електричної мережі високої напруги є найважливішим чинником, що визначає характер експлуатації електроустаткування, впливає на вибір ізоляції і організацію релейного захисту. Цей режим визначає перехідні електромагнітні процеси і пов'язані з ними перенапруження, умови електробезпеки при замиканнях на землю і вимоги до заземляючих пристроїв електроустановок.

Основною гідністю мереж з ізольованою нейтраллю є високий ступінь надійності електропостачання споживачів електричної енергії при щодо малих витратах на резервування, оскільки при однофазних замиканнях на землю (найбільш частий вид пошкодження) мережа може залишатися в роботі тривалий час (до чотирьох годин), достатнє для відшукання і усунення місця пошкодження. Проте при роботі мережі з ізольованою нейтраллю однофазні замикання на землю неминуче супроводжуються виникненням специфічних для цього режиму перенапружень, до основних з яких відносять дугові перенапруження. Такі перенапруження існують у вигляді перехідних процесів при переміжній дузі і небезпечні для електроустаткування високими кратностями і своєю тривалістю.