Виникнення перенапружень при однофазних дугових замиканнях на землю відбувається за рахунок зсуву нейтралі мережі, що приводить до зростання напруги на здорових фазах до лінійних. Накладена на стале значення напруги високочастотна складова перехідного процесу істотно підвищує кратність дугових перенапружень. Це можна побачити на рис.1. При замиканні фази З на землю з'являється напруга на нейтралі U0, зростання якого в процесі багатократного запалення і гасіння дуги струму замикання приводить до поступового наростання (ескалації) перенапружень в мережі.
Малюнок 1 - Замикання фази З на землю і згасання дуги при першому переході через "нуль" струму високочастотних коливань (C=3мкФ, IC=10A)
Оскільки в даний час відсутні надійні засоби захисту електроустаткування мереж власних потреб від наслідків однофазних замикань на землю, то одне з успішних вирішень даної проблеми може бути знайдене шляхом оптимізації управління режимом нейтралі, що забезпечує максимальне обмеження амплітуди і тривалості всіх можливих підвищень напруги і зниження до мінімуму теплових втрат в місці пробою ізоляції.
Визначення основних чинників, які впливають на характер перехідних процесів і величину перенапружень при однофазних замиканнях на землю, проводилося з використанням математичної моделі, розробленої на кафедрі "Електричні станції" Донецького національного технічного університету. Вона дозволяє моделювати глухе замикання фази на землю і через переміжну дугу, із згасанням її під час переходу через нуль високочастотної складової (теорія Петерсена) або складової струму промислової частоти (теорія Петерса і Слепяна), а також багатократний пробій ізоляції при різних значеннях параметрів кабельної мережі, трансформаторів, рухового навантаження і режиму роботи нейтралі мережі. Користуючись методом контурних струмів, для схеми заміщення власних потреб отримана система диференціальних рівнянь 50-го порядку, яка чисельно інтегрується неявним методом Ейлера, що володіє підвищеною чисельною стійкістю, загальний вираз якого на кожному i-ом кроці розрахунку h виглядає таким чином:
де
- вектор шуканих змінних;- вектор початкових наближень;
- поточний час розрахунку;
- кількість вирішуваних рівнянь.
Отримана система лінійних рівнянь алгебри, записана щодо вектора шуканих змінних вирішується на кожному кроці методом Гауса:
де A - матриця поточних коефіцієнтів розміром
;B - вектор-стовпець початкових наближень і вільних членів системи рівнянь.
Аналіз отриманих результатів дозволяє зробити вивід про те, що наявність особливостей в характері перехідних процесів в мережі з резистивною заземленою нейтраллю, де частотні параметри струму і напруги можуть мінятися в широких межах, може бути причиною того, що широко поширені в даний час в мережах власних потреб електростанцій реле РТЗ-51 (РТЗ-50, РТ-40/0,2) в умовах частих пробоїв, що повторюються, так званих клювків, не встигають успішно спрацювати, і можуть знаходитися в такому стані тривалий час навіть при великих струмах замикання на землю. Хоча і невеликі по величині, але перенапруження, що тривало діють в цьому випадку, можуть викликати пошкодження електроустаткування мережі. Виходячи з викладеного, можна укласти, що резистивне заземлення нейтралі мережі власних потреб електростанцій не виключає можливості пошкодження електроустаткування в умовах нестійкого горіння дуги, що і підтверджується в експлуатації.
До недоліків заземлення резистора нейтралі мережі 6 кВ слід також віднести низьку термічну стійкість бэтелового резистора при його величині 100-400 Ом, оскільки допустима тривалість замикання при цьому не перевищує 1,2 хвилин. Після закінчення цього часу приєднувальний трансформатор, в нейтраль якого включений резистор, повинен бути відключений і мережа переводиться в режим з ізольованою нейтраллю зі всіма властивими нею недоліками.
5.2. Методи запобигання аварийних наслідків від замикань.
Найпоширенішим в даний час методом запобігання аварійним наслідкам від однофазних замикань в даних мережах є заземлення нейтралі мереж через настроєних індуктивності (ДГК), які, зберігаючи переваги мереж з ізольованою нейтраллю, покликані поліпшити умови роботи електроустаткування при однофазних замиканнях на землю. Таке поліпшення передбачається за рахунок істотного зниження швидкості відновлення напруги на пошкодженій фазі після згасання дуги і зменшення струму в місці замикання на землю до рівня активної складової і вищих гармонік. Внаслідок цього, відбувається мимовільне згасання дуги, а, отже, скорочення об'ємів руйнувань, пов'язаних з термічною дією заземляючої дуги, а також зниженням кратності перенапружень до безпечної величини, оскільки з'являються шляхи для витікання на землю статичних зарядів з ємкості елементів мережі здорових фаз. Проте для досягнення таких результатів ступінь розладу котушки не повинен перевищувати меж
.При установці в мережах 6-35 кВ котушки знижується швидкість відновлення напруги на хворій фазі після згасання дуги. При точній настройці котушки в резонанс час відновлення напруги до номінального складає декілька секунд. За цей час міцність ізоляції в місці пошкодження встигає відновитися. Але цей процес має і негативні сторони, тому що весь цей час на здорових фазах тримається напруга порядку (1,9-2,3) Uф. Відносна тривалість існування таких перенапружень може привести до пробою ізоляції в цих фазах, особливо в старих мережах з поганою ізоляцією.
У реальних мережах набудувати котушку точно в резонанс неможливо, оскільки індуктивність котушки регулюється дискретно. Допускається розлад котушки v<5% . При розладі в 5% напруга, що відновлюється, на пошкодженій фазі має характер биття. Що огинає напругу досягає максимуму, 1,78Uф, що становить. Що надалі огинає напругу прагне до Uф. Міцність ізоляції до моменту максимуму биття може відновитися, але напруга 1,78Uф на хворій фазі може викликати повторний пробій ізоляції з подальшою кратністю перенапружень 2,89Uф. При розладі більше 25% кратність перенапружень така ж, як в мережах без установки дугогасящей котушки. При цьому кратність перенапружень при перекомпенсації трохи менше, ніж при недокомпенсації.
За наявності несиметрії настройка встановленою в мережі ДГК в резонанс веде до різкого збільшення напруги зсуву нейтралі в нормальному режимі роботи мережі. Причому несиметрія ємкостей фаз щодо землі сильніше впливає на величину зсуву нейтралі, чим несиметрія активних опорів ізоляції.
На основі проведених досліджень кафедрою "Електричні станції" Донецького національного технічного університету було запропоновано для усунення виявлених недоліків, викликаних зсувом нейтралі мережі і тривалим існуванням підвищеної напруги в режимах замикання фази на землю, паралельно ДГК підключити через контактор резистор. Опір резистора вибирається таким, щоб напруга несиметрії не перевищувала допустимого, а величина і тривалість перенапружень були мінімальними. Для того, щоб резистор не перегрівався великими струмами при стійкому однофазному замиканні він відключається за допомогою контактора з витримкою часу 0,5 з при перевищенні напруги нульової послідовності 20% від номінального.
Зі всієї різноманітності напрямів роботи по вдосконаленню системи компенсації ємкісних струмів на землю до практичної реалізації виявилися прийнятними і набули широкого поширення ДГК типу ЗРОМ із ступінчастим регулюванням індуктивності котушки і плунжерные ДГК з плавним регулюванням індуктивності. У першому випадку регулювання здійснюється шляхом перемикання відгалужень на робочій обмотці ДГР. Крок регулювання по струму для таких апаратів складає не менше 10% від повного струму котушки. Перемикання відпаювань проводиться тільки уручну при повністю знятій напрузі. Отже, в сучасних умовах дефіциту потужності і наявності графіка аварійного відключення електроприймачів при використанні таких ступінчасто регульованих дугогасящих апаратів виникнення значних розладів компенсації є неминучим.
У другому випадку регулювання ДГК здійснюється за рахунок плавної зміни величини повітряного зазору між рухомими частинами магнітопровода (плунжерами). Такі котушки володіють лінійною характеристикою, що намагнічує, у всіх режимах роботи мережі. Експлуатуються, як правило, в блоці з пристроями автоматичного регулювання компенсації і забезпечують швидкість регулювання по струму в межах 0,25-2 А/с.
Як регулятори використовують беспоисковые, виготовлені, як правило, кустарним способом пристрої, засновані на принципі фазового автопідстроювання частоти контура нульової послідовності і робочої напруги мережі. Регулятори не мають системи контролю виходу об'єкту регулювання в область резонансу і не мають зворотного зв'язку по ступеню настройки котушки. Якщо врахувати, що точність настройки значною мірою залежить від сумарної ємкості всієї мережі, тривалих і випадкових змін стану ізоляції електроустаткування, великої кількості можливих параметричних обурюючих чинників і т. д., які вимагають періодичного втручання обслуговуючого персоналу в систему регулювання, то стає очевидним, що в умовах експлуатації контроль ступеня настройки котушки значно утруднений, а висока точність настройки мало вірогідна.