Смекни!
smekni.com

Защитные диэлектрические пленки в планарной технологии (стр. 3 из 6)

Окисление силана кислородом. Преимущество этой реакции перед предыдущей заключается в том, что в этом случае не происходит образования газообразных органических радикалов и углерода, а сама реакция идет при более низкой температуре.

Окисление моносилана кислородом является перспективным методом в полупроводниковой технологии, так как он дает возможность осаждать оксидные пленки кремния на интерметаллические соединения типа AhiBv и A11Bviбез нарушения их стехиометрического состава. Для протекания реакции образования диоксида кремния внешний нагрев не требуется, однако для получения оксидных пленок кремния более высокого качества процесс проводят при температуре 150—300°С:

Исходными веществами для проведения этого процесса являются газовые смеси, которые включают в себя высокочистый моносилан SiH4, аргон или азот (газы-носители) и кислород. Контролируемое окисление сильно разбавленного инертным газом силана (3—10%) й позволяет реализовать осаждение диоксида кремния в широком диапазоне температур со скоростью 10—50 нм/мин.

Температурный интервал осаждения оксидных пленок кремния определяется концентрациями моносилана и окислителя. При изменении концентрации моносилана от 0,8 до 0,015 об. % для постоянного отношения силан: окислитель= 1: 3 температура процесса осаждения должна быть увеличена с 140 до 450° С.

Особое внимание следует обращать на минимальную температуру процесса осаждения. Нижний температурный предел лимитируется двумя факторами: монотонным увеличением пористости пленки диоксида кремния и гомогенным окислением моносилана в газовой фазе. Монотонное увеличение пористости пленки связано с тем, что по мере снижения температуры процесса уменьшается энергия поверхностной миграции адсорбированных подложкой молекул. Кристаллизация осаждаемых частиц при этом происходит в положениях, все более далеких от минимума свободной энергии системы. Это вызывает образование рыхлых, пористых пленок с низкой электрической прочностью и невысокой адгезией к подложке. При температурах проведения процесса осаждения ниже 150° С происходит отложение частиц диоксида кремния в виде мелкодисперсного белого порошка.

Гомогенное окисление моносилана в газовой фазе связано с тем, что чем ниже температура осаждения оксидной пленки, тем большие концентрации моносилана необходимы для реализации механизма окисления и, следовательно, все большая часть моносилана окисляется в газовой фазе, засоряя реакционную камеру и ухудшая качество образующейся пленки.

В качестве окислителя кроме кислорода могут быть использованы кислородсодержащие соединения, такие, как N2O, CO2, H2O. Использование в качестве окислителей закиси азота и углекислого газа позволяет практически исключить гомогенное окисление, однако при этом невозможно реализовать осаждение пленок диоксида кремния в диапазоне температур 200—350° С.

Контролируемое окисление моносилана (кислородом), достаточно сильно разбавленного инертными газами, позволяет получать пленки SiO2 в широком диапазоне температур (200—500°С), при этом скорости осаждения пленок достигают значений порядка 50— 100 нм/мин.

Следует отметить, что пленки SiO2, полученные данным методом, равномерны по толщине по всей поверхности пластины, обладают достаточной сплошностью, стабильностью химического состава и хорошей маскирующей способностью при проведении процессов диффузии. Отличительным признаком пленок SiO2, полученных этим методом, является более высокая скорость их травления.

Анодное окисление кремния

Анодное окисление кремния является одной из основных электродных реакций, происходящих на поверхности исходной пластины при воздействии на нее электролита и электрического тока. Метод анодного окисления включает две модификации: окисление поверхности кремния в жидком электролите и окисление в газовой плазме. В первом случае процесс называют электролитическим анодированием, во втором — газовым анодированием.

Электролитическое анодирование. При обычных условиях поверхность кремниевых пластин покрыта тонкой пленкой оксида толщиной около ЗОА. Эта оксидная пленка разделяет вещества, которые участвуют в реакции анодного окисления. Поэтому дальнейший рост оксидной пленки возможен только при переносе за счет диффузии или миграции ионов реагирующих веществ через эту пленку. Скорость роста пленок SiO2 на кремнии в жидком электролите, не растворяющем эти пленки, зависит от электростатического поля в слое оксида, стимулирующего миграцию ионов. Считают, что подвижным компонентом в рассматриваемом случае является ион кремния. Поэтому процесс выращивания анодных оксидных пленок может быть описан как процесс переноса ионов кремния через границу раздела оксид — кремний и через оксид к границе раздела оксид — электролит, где происходит реакция окисления.

Присутствие ионов в электролите у границы с оксидом заметно влияет на скорость окисления, а также на предельную толщину оксидной пленки. Толщина пленки при анодном окислении определяется значениями напряжения пробоя и ионного тока. Регулирование значения общего тока в процессе анодного окисления может осуществляться при постоянном токе, при постоянном напряжении и при комбинации этих величин.

Рассмотрим окисление при постоянном токе. Для поддержания постоянного ионного тока через оксид необходимо, чтобы с увеличением толщины оксидной пленки возрастало падение напряжения в этой пленке. Поэтому анодирование при постоянном токе можно характеризовать как скорость роста напряжения в оксиде. Скорость изменения напряжения приблизительно пропорциональна току. Следовательно, чем выше плотность ионного тока, тем быстрее повышается напряжение и быстрее растет оксид. При этом типичное значение коэффициента полезного выхода ионного тока составляет около 1% от выхода электролитических реакций. Анодное окисление при постоянном токе может продолжаться до тех пор, пока напряжение не достигнет определенного значения, зависящего от типа электролита и конструкции установки, после чего происходит пробой оксидной пленки.

В случае окисления при постоянном напряжении между анодом и катодом первоначальный ток, возникающий вследствие ионной проводимости оксида, определяется сопротивлением электролита, толщиной первоначального слоя оксида на кремниевой пластине и поляризацией, связанной с образованием «двойного слоя» в электролите. По мере роста оксида электрическое поле в нем уменьшается, что приводит к уменьшению тока, проходящего через оксид. В результате рост оксида замедляется.

Большую роль в получении воспроизводимых результатов анодного окисления играет выбор электролита и процент содержания в нем влаги. Могут быть использованы самые различные электролиты на основе азотной, борной или фосфорной кислот с добавками нитрата натрия, нитрата калия, бихромата аммония и др.

Газовое анодирование кремния аналогично электролитическому с той лишь разницей, что вместо электролита используется газ. Этот метод применяется при выращивании толстых оксидных пленок. Кислородная плазма, возбуждаемая полем высокой частоты, служит источником отрицательно заряженных кислородных ионов. Ионы кислорода из плазмы взаимодействуют с поверхностью кремниевой пластины. Рост оксида зависит от режима проведения анодного окисления: от давления внутри рабочей камеры, температуры и плотности плазмы.

8. Осаждение пленок оксида кремния термическим испарением

Для нанесения защитных пленок оксида кремния используют два метода, основанные на испарении монооксида кремния. В первом методе используется технический порошкообразный монооксид кремния. Второй метод заключается в том, что кремниевый электрод нагревается в атмосфере кислорода. При этом его поверхность покрывается монооксидом, который легко испаряется, так как обладает более высоким, чем у кремния, давлением паров.

Оксиды, получаемые путем напыления на полупроводниковую подложку, представляют собой комплексы вида Si—SiO—SiO2-. При использовании в качестве источника испарения порошка монооксида кремния одним из наиболее важных моментов для получения однородной защитной оксидной пленки является конструкция лодочки для порошка монооксида кремния. Скорость испарения зависит от геометрии лодочки, температуры, давления, а также от однородности порошка монооксида. При использовании какого-либо определенного источника скорость испарения регулируют изменением электрической мощности, служащей для нагрева лодочки. Кремниевые пластины при этом методе осаждения защитной пленки нагревают до 300° С и выше, чтобы получить хорошую адгезию защитной пленки к исходной пластине. Если осаждение производится с малой скоростью, но при высоком парциальном давлении кислорода, то пленка обладает такими же характеристиками, как и пленка SiO2. При больших скоростях осаждения или при более низком парциальном давлении кислорода оптические характеристики осажденной пленки сходны с характеристиками, присущим» пленкам SiO.

Защитные пленки, обладающие свойствами пленок SiOa, получают обычно при температуре источника 1300—HOO0C и суммарном давлении менее 6,5· IO-4 Па. >

Для получения оксидных пленок методом напыления в вакууме в качестве источника можно использовать кремний. При этом определяющую роль играет реакция у поверхности кремния. Температура и парциальное давление кислорода у этой поверхности определяют скорость адсорбции кислорода на поверхности кремния и испарения S1O2. Кремний нагревается до температуры 700— IOOO0C Парциальное давление кислорода должно быть таким, чтобы на поверхности кремниевого источника обеспечивалась реакция Si-f-O—*-SiO. Указанным методом на исходной полупроводниковой пластине можно получить оксидную пленку толщиной 0,1 мкм при температуре 900°С и давлении 1,3· IO-4 Па в течение 30 мин. При подогреве подложки, на которой располагаются пластины, улучшаются адсорбция паров оксида и адгезия их к полупроводниковым пластинам. Во избежание испарения осажденной пленки оксида температура пластин должна быть на 100—200° С ниже температуры источника.