Смекни!
smekni.com

Зменшення зношування твердосплавних різців шляхом зниження температурних навантажень в зоні різання (стр. 2 из 3)

.(18)

При такій організації зберігання інформації про матрицю, системи лінійних алгебраїчних рівнянь (СЛАР) обчислювальний алгоритм варіаційно-градієнтного методу набув такого вигляду.

Крок 1. Задаємо систему лінійно незалежних векторів

, де

. (19)

Крок 2. Будуємо матрицю

,
.

Процес побудови приблизного розв’язку закінчувався, коли виконувалася умова

(20)
(21)

(22)

.

Крок 3. Обертаємо матрицю

і зберігаємо

. (23)

Крок 4. Визначаємо початкове наближення за методом Рітца

,
(24) де
,
(25)

Крок 5. На k-й ітерації, якщо

- наближення відомо, виконуємо такі дії:

5.1)

, (26)

де

,
,
,
,
,
;

5.2)

, (27)

де

,
,
,
,
,
;

5.3)

,
; (28)

5.4)

; (29)

5.5)

,
. (30)

Оцінка міцності ріжучої частини інструменту проводилась за критеріальними напругами Писаренко-Лєбєдєва ση.


2. Дослідження термопружної міцності твердосплавних різців при їх нестаціонарному тепловому та силовому навантаженні

Силові навантаження визначались об’ємними контактними навантаженнями діючих на передній та задній гранях згідно з розробленим енергетичним методом. Теплові навантаження визначаються розподілом температури в ріжучій частині інструменту. Об’ємні розподіли температури визначались за допомогою раніше описаних методик на основі МСЕ, як при стаціонарному точінні так і при його врізанні та охолодженні.

Аналіз параметрів процесу різання показав, що як характер їх взаємодії так і їх величини залежать від виду оброблюваного матеріалу, режимів різання, геометрії ріжучого інструменту, виду покриття та цілого ряду інших умов точіння. Тому необхідно розраховувати для кожного конкретного випадку обробки та при кожній зміні хоча б одного з параметрів процесу різання.

В першу чергу була оцінена роль силового та теплового напруження ріжучого інструменту, а також їх сумарної взаємодії.

Під дією лише контактних навантажень максимальна величина ση знаходиться на задній грані трохи нижче кромки і досягає величини 1140МПа, зменшивши свою величину майже в 2 рази на ріжучій кромці. Термонапруження, що визначаються лише температурним полем, мають дві зони своїх максимальних значень. Перша зона створює максимальні термонапруження на ріжучій кромці ση= 660МПа, а друга зона знаходиться під передньою гранню в зоні контакту взаємодії стружки з різцем. Величина ση в цій зоні в двоє менша ніж на ріжучій кромці ση =320МПа. Як бачимо окремий розгляд теплових і силових навантажень не дають правильної картини розподілу ση, що не відповідає експериментам і практиці руйнування ріжучої частини інструменту. В цьому випадку зона максимальних критеріальних напружень ση починається на ріжучій кромці та розповсюджується вздовж задньої грані, досягаючи величини ση=1320МПа. Точіння титанового сплаву ВТ1-0 твердосплавним різцем ВК8 (V=2.1м/с, S=0.15мм/с, t=0.5мм) дає іншу картину розподілу критеріальних напруг визначаючи, що їх гранична величина виникає не лише на задній грані, але й на передній в зоні контакту зі стружкою утворюючи лунку. Характер розміщення ση при комбінованій дії силових та теплових навантажень повністю відповідає характеру руйнування ріжучої кромки. В даному випадку зона, де запас міцності менший одиниці, розповсюджується безпосередньо від ріжучої кромки вздовж задньої грані, та довжина її досягає 0.17 мм. Вимір довжини фаски зносу, утвореної на задній грані був 0.16 мм, що практично співпадає з розмірами зони, де критеріальні напруження, перевищують кордон міцності твердого сплаву ВК8. При охолодженні ріжучого інструменту максимальна величина критеріальних напруг утворюється під передньою гранню різця, що призводить до появи тріщин на ній.

Зміна параметрів процесу різання при точінні сплаву 30ХГСА твердосплавним різцем Т5К10. (Рz,Рy,Рx- сили різання, ln- довжина контакту стружки, h3- знос різца, qf- середні контактні навантаження тертя, σ - крітеріальні навантаження ріжучої кромки, Тocmax, Тkpmax- максимальні температури різання і ріжучої кромки. V=1,2 м/с, S=0,1 мм/об, t=0,5мм.)

3. Аналіз отриманих результатів

Одним із головних показників ефективності роботи ріжучого інструменту являється стійкість. Найбільша температура і контактні навантаження в різці виникають на передній грані, із-за цього з точки зору теорії тертя передня грань повинна зношуватись набагато інтенсивніше ніж задня. Практика показала, що зношування ріжучого інструменту виникає в основному по задній грані. Очевидно, що одну із вирішальних ролей в інтенсифікації зношення визначають термопружні навантаження, які саме на задній грані досягають своєї максимальної величини і сприяють руйнуванню її поверхні. Так при точінні сталі 30ХГСА твердосплавним різцем Т5К10 зона розподілення критеріальних навантажень перевищує межу міцності через 18с досягаючи величини 0.13мм, а зношення 0.12мм.

При точінні титанового сплаву ВТ1-0 та сталі 20Х різцем ВК-8 зона небезпечних критеріальних навантажень досягає величини 0.21 мм, та відповідно знос дорівнює 0.20. Таким чином чітко спостерігається ріст зношення з ростом критеріальних навантажень, а величина і форма зношення відповідають розподілу критичних критеріальних навантажень.

Така взаємодія зношення та міцності різця дозволяє визначити найбільш ефективні його покриття для заданих умов обробки.

Так при точінні твердосплавним різцем ВК-8 сталі 20Х, найбільшу міцність різцю як і стійкість забезпечує азотування, при точінні титанового сплаву ВК1-0-молібденове покриття.

Аналогічні результати були отримані і при застосуванні покриттів для твердосплавних різців Т5К10 та Т15К6 при точінні сталі 30ХГС. В якості оцінки напруженого стану ріжучої частини приймається критеріальне напруження ση, яке комплексно включає величини і інтенсивності головних напруг. Аналізуючи динаміку зміни термонапруг в ріжучому інструменті було виявлено, що їх найбільш небезпечні величини виникають при врізанні різців. Тому щоб зменшити їх вплив на руйнування інструменту було запропоновано поступове збільшення швидкості різання при врізанні різців. Застосування цього методу була приведена при точінні сталі 20Х твердосплавним ріжучим інструментом ВК ХОМ (γ=0, α=8˚, φ=φ1=45˚). Врізання інструменту проводиться з S=0.15мм/с, t=0.5мм з початковою швидкістю різання 1.5 м/с з наступним її збільшенням на протязі 15с до 2.5 м/с.