Досвіди, у яких спостерігалася усталена робота ежектора, виконані при кутовій швидкості обертання
= 73,7 с-1 і температурі води 298 К. Аналіз на основі теорії гідродинамічної подоби показує, що окружне й осьове числа Рейнольдса для умов експерименту відповідають більш 1,8×104 хв-1 ротора реального двигуна при швидкості охолоджуючого повітря в каналі під маточиною диска 35,6 м/с.Рис.10. Температурні напруження:
а —радіальні; б —тангенціальні;
— диск і проставочні кільця екрановані повністю; — диск без екрана і ежекторних каналів; — екранована маточина і полотно диску, на периферії екрану наявний ряд отворів; — екранована маточина і 2/3 полотна диску.Спостерігається істотне зниження радіальних температурних напружень у зоні переходу від полотнини до конічної частини маточини для екранованих дисків (рис.10, а), що пояснюється інтенсивним розігрівом маточини в порівнянні з неекранованим диском. Екранування забезпечує істотне зниження тангенціальних напружень у циліндричній частині маточини в порівнянні з неекранованим диском, на мінімальному радіусі тангенціальні напруги в екранованому диску знижені в 2,5 рази (рис.10,б). Незначне перевищення тангенціальних напружень на периферії екранованого диска пояснюється більш інтенсивним охолодженням периферії у випадку екранування.
Виконане зіставлення тангенціальних напружень у зоні маточини екранованого і неекранованого дисків в режимах прогріву й охолодження показало, що величина напружень у маточинній частині екранованого диска істотно менше у всьому діапазоні режимів прогріву й охолодження, що підтверджує ефективність роботи ежекторних пристроїв на перехідних режимах роботи двигуна.
Розрахунки запасу міцності виконані для диска ступеня ротора з температурою повітря в проточній частині tmax = 570 °C; температурою охолоджуючого повітря під маточиною tв = 270 °C; частотою обертання n =10 000 хв-1 і витратою осьового потоку охолоджуючого повітря
= 3,5 кг/с. Результати розрахунків показали, що екранування в даному випадку дозволяє збільшити запас міцності в маточинній частині диска на 11% у порівнянні з неекранованим. При зменшенні запасу міцності екранованого диска до величини запасу міцності неекранованого маса екранованого диска може бути зменшена. У цьому випадку екранування не приводить до збільшення маси диска.ВИСНОВКИ
1. Підвищення параметрів циклу в цілях подальшого вдосконалення ГТД вимагає створення ефективних систем охолоджування, що забезпечують температурний стан, необхідний за умовами міцності елементів ротора. При існуючих системах охолоджування роторів дискобарабанної конструкції перепади температур по радіусу диска можуть складати більше 350 К, унаслідок чого в дисках виникають температурні напруги, які в значній мірі впливають на напружений стан ротора. Тому зменшення радіальної нерівномірності температурних полів дисків роторів ГТД є актуальною задачею, з метою рішення якої були розроблені конструкції пристроїв, принцип дії яких заснований на використанні динамічного натиску осьового потоку повітря, що відбирається на охолоджування ротора.
2. Експериментально встановлено, що ефективно зменшують перепад температури по радіусу диска ротора пристрої, принцип дії яких заснований на ежекції з порожнини ротора гарячого шару, який формується на поверхні проставочних кілець і диска, що сприяє розігріванню маточинної частини диска. Найменший перепад температури встановлюється при екрануванні диска і проставочних кілець. Пристрої, конструкція яких передбачає зміну напряму частини осьового потоку охолоджуючого повітря від осі ротора до периферії порожнини, слабо впливає на зменшення радіальної нерівномірності температури диска, оскільки динамічного натиску охолоджуючого повітря недостатньо, щоб впливати на циркуляцію, яка встановилася в порожнині під дією різниці щільності повітря в полі масових сил. Працездатність ежекторних каналів при величині окружних і осьових чисел Рейнольдса, характерних для реальних ГТД, підтверджена візуальними експериментальними дослідженнями.