Независимо от степеней точности стандартизирован боковой зазор зубчатой передачи. Боковой зазор необходим для предотвращения заклинивания зубьев вследствие их расширения от нагрева при работе, для размещения смазки и обеспечения свободного вращения колес. Обозначение: Н, Е, D, С, В, А
(Н – нулевой зазор…, В – нормальный, А – широкий). Чаще всего применяют сопряжения В и С (уменьшенный зазор в реверсивных передачах).
Примеры обозначения степеней точности передач редукторов в документации:
8-7-7-С ГОСТ 1643-81 – допуски цилиндрической передачи: кинематической точности по 8-й степени, плавности работы и контакта зубьев по 7-й степени точности, боковой зазор С;
7-В ГОСТ 1758-81 – допуски конической передачи: все нормы по 7-й степени точности, боковой зазор В.
5. Цилиндрические зубчатые передачи
5.1 Силы в зацеплении
Силы принято определять в полюсе W (рис.5) зацепления.
Рис.5
По линии зацепления b – b (рис. 5) действует нормальная сила Fn. Для удобства расчетов силу Fn принято раскладывать на три составляющие:
1) Ft – окружная сила, направленная по касательной к делительным окружностям. Это основная, движущая, полезная сила. На колесе z2 Ft совпадает с направлением вращения n2. На шестерне z1 F направлена против вращения n1.
Следовательно, на рис. 5 дана схема сил для шестерни:
Ft = 2000Т / d, (1)
где Т – Н∙м; d – мм;
2) Fr – радиальная сила, направленная по линии центров (радиусам). Для внешнего зацепления – к оси вращения, для внутреннего – от оси.
В торцовой плоскости t – t (рис. 5) имеем
Fr = tgαt, (2)
где αt – делительный угол профиля в торцовой плоскости: tgαt = tgαn / cosβ; αn– нормальный угол зацепления, β – угол наклона зубьев. В практических расче-тах αt ≈ αn =20°.
3) Fa – осевая сила, направленная параллельно оси а – а зубчатого коле-
са. Силы Ft и Fа как составляющие нормальной силы Fn′, всегда находятся вне линии зуба (рис. 5). В делительной плоскости:
Fа = Fttgβ. (3)
Необходимый в дальнейших расчетах основной угол наклона зуба
βb (в основной плоскости зацепления b) определяется как βb = arcsin(sinβcosαn).
Полная нормальная сила (рис. 5):
Fn = Fnt / cosβb = Ft / (cosαtcosβb). (4)
Для прямозубых передач во всех формулах β = βb = 0; αt = αn = α;
Ft = 2000T / d; Fr = Fttgα; Fa = 0; Fn = Ft / cosα.
Недостатком косозубых передач является наличие осевых сил Fа, которые дополнительно нагружают опоры валов, усложняя их конструкцию.
Рис. 6
В косозубых передачах углы β ограничены в пределах 8…18°.
Указанный недостаток устранен в шевронной передаче, которая представляет собой сдвоенную косозубую с противоположным наклоном зубьев на полушевронах. Из рис. 6 видно, что осевые силы Fа /2 взаимоуравновешены.
5.2. Расчет на сопротивление контактной усталости
Косые зубья цилиндрических колес нарезают тем же инструментом, что и прямые, установленным относительно заготовки под углом β.
Расчет на прочность принято вести для прямозубой передачи. Для этого все зубчатые и червячные передачи приводятся к эквивалентным прямозубым цилиндрическим.
Эквивалентные параметры косозубого цилиндрического колеса (приведение рассматривалось в курсе "Теория машин и механизмов"): делительный диаметр dv = d / cos2β; эквивалентное число зубьев zv = z / cosβ, где z – действительное число зубьев косозубого колеса.
С увеличением β эквивалентные параметры возрастают, способствуя повышению прочности передачи. Вследствие того, что косой зуб входит в зацепление не сразу всей длиной, он лучше прирабатывается, а большее число пар зубьев в зацеплении снижает шум и динамические нагрузки. Чем больше угол β, тем выше плавность зацепления.
Контактная прочность (σН ≤ σНР) является основным критерием работоспособности большинства зубчатых передач.
Расчет производят в полюсе W (рис. 7), где имеет место наибольшая нагрузка (зона однопарного зацепления) и начинается усталостное выкрашивание зубьев.
Контакт зубьев рассматривают как сжатие двух цилиндров в плоскостях n и b
Контакт зубьев рассматривают как сжатие двух цилиндров в плоскостях nс нормальными радиусами кривизны ρn1 и ρn2. Используют формулу Герца для первоначального контакта по линии:
σН = ZE(wHn / ρnv)1/2 ≤ σНP. (5)
Напряжения σН одинаковы для зубьев z1 и z2. Оценку сопротивления контактной усталости производят по расчетной величине допускаемого напряжения σНР.
В формуле (5): ZE = (1 / {π[(1 – ν12) / E1 + (1 – ν22) / E2]})1/2 –
– коэффициент механических свойств материалов z1 и z2: Е – модуль упругости; ν1, 2 – коэффициенты Пуассона. Для стали Е1 = Е2 = 2,1∙105 МПа, ν1 = ν2 = 0,3 и ZЕ =191,6 МПа1/2;
wHn = FnKH / lΣ – удельная нормальная расчетная нагрузка (на единицу длины lΣ контактных линий), Н/мм, где KH – коэффициент нагрузки; Fn – нормальная сила.
Вспомним, что lΣ = bwεα / cosβb, где εα – торцовый коэффициент перекрытия; Fn = Ft / (cosαtcosβb). Тогда получим wHn = FtKH / (bwεαcosα
1 / ρnv = 1 / ρn1 ± 1 / ρn2 – приведенная кривизна зубьев в нормальной плоскости, 1/мм.
Рис. 8
Знак плюс принимают при контакте двух выпуклых тел (рис. 8), минус – выпукло (ρ1)-вогнутых (ρ2) тел (например, внутреннее зацепление).
Нормальные радиусы кривизны (рис. 7, б)ρn = ρt / cosβb, где из ΔONW (рис. 7, а) торцовый радиус ρt = dwsinαtw / 2. |
Выразив 1 / ρnvчерез параметры передачи,
получим
, где d1 – делительный диаметр шестерни z1.Подставив wHn и 1 / ρnv в формулу (5) и обозначив Zε =
– коэффициент, учитывающий суммарную длину контактных линий (для прямых зубьев Zε = );ZH =
– коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе W, получим решение в форме ГОСТ 21354-87:σН = ZEZεZH
, (6)где знак плюс – для внешнего зацепления; минус – для внутреннего.
Это формула для проверочного расчета активных поверхностей зубьев цилиндрических передач на сопротивление контактной усталости с целью предотвращения поверхностного выкрашивания.
В проектировочном расчете из условия контактной прочности определяют межосевое расстояние аw – основной габаритный размер передачи.
Для этого в формуле (6) принимают ZE = 191,6 МПа1/2, в среднем εα =
= 1,6 и Zε = 0,8 – косые и шевронные зубья (β ≠ 0), Zε = 0,9 – прямые зубья (β = 0); αt = αtw = αn = 20°, ZН = 2,5 – прямые зубья, ZН = 2,46 – косые (β = 10О) зубья. Вводят коэффициент рабочей ширины ψba зубчатого венца по межосевому расстоянию: ψba = bw / аw , заменяя bw = ψbaаw. Диаметр d1 = 2аw / (u ± 1). Окружная сила Ft = 2000T1 / d1. Тогда будем иметь
аw′ = Ка(и ± 1)
, (7)где Ка = ZEZεZH
, при β ≠ 0 Ка = 410 МПа1/3, при β = 0 Ка = 450 МПа1/3.В формуле (7) аw′, мм, Т1 , Н∙м, σНР , МПа.
Расчетное значение аw′ округляют до аw в ближайшую большую сторону:
– для стандартных передач по ГОСТ 2185-66 (по ряду чисел Ra20);
– для нестандартных передач возможно округление до числа, кратного пяти.
Формула (7) главная для проектировочного расчета закрытых цилиндрических передач с целью предотвращения усталостного выкрашивания поверхностей зубьев.
5.3 Расчет на сопротивление изгибной усталости
1. Прямозубая передача
Приняты следующие допущения:
1. Нагрузка передается одной парой зубьев (lΣ = bw) и приложена к вершине зуба по линии зацепления N1N2 под углом γ (γ > αtw) (рис. 9).
2. Зуб рассматривается как вписанная в него консольная балка АВС параболического профиля, имеющая равное сопротивление изгибу в сечениях по высоте hp.
Удельная линейная расчетная нагрузка wFn = Fn / lΣ = FtKF / (bwcosα), где KF – коэффициент нагрузки при расчете на изгиб (KF = KАKFβKFvKFα). Нагрузка FtKF / bw = wFt – удельная окружная и wFn = wFt / cosα. Нагрузка wFnпереносится в точку А и раскладывается на составляющие wFncosγи wFnsinγ.
В заделке ВС балки возникают напряжения изгиба σи = wFncosγ∙hp / Wи сжатия σсж = wFnsinγ / A, где W – момент сопротивления изгибу сечения ВС; А – площадь сечения ВС при его ширине, равной единице (bw = 1 мм так как нагрузка wFn единичная) и длине s; W = 1∙s2 / 6 и А = 1∙s.
Суммарные номинальные напряжения (рис. 9):– в точке В σFnomB = σи – σсж ≤£σFР (растяжение);– в точке С σFnomС = σи + σсж ≤£σFР (сжатие).Несмотря на то, что максимальные напряжения возникают в точке С – сжатия ножки зуба, усталостные трещины и разрушение зубьев начинаются на растянутой стороне в точке В. Расчет ведут по напряжениям σFnomB растянутой стороны.Расчетное сечение ВС расположено в зоне концентрации напряжений, вызванной изменением формы выкружкой (галтелью) радиуса ρ на переходной поверхности. Это учитывается коэффициентом концентрации напряжений ασ. Местное напряжение изгиба σF= ασσFnomB.. |
Раскрывая последнюю формулу в точке В, будем иметь
σF =
.Исходя из геометрического подобия зубьев разных модулей, плечо hp и толщину s выражают через модуль m: hp = μm, s = λm, где μ и λ – коэффициенты, учитывающие форму зуба.