Смекни!
smekni.com

Идентификация параметра зазора при регулировании положения (стр. 2 из 3)

, (2.14)

. (2.15)

Поскольку скоростная ошибка задана, то система должна иметь астатизм первого порядка. Так как необходима высокая добротность по скорости, то выберем желаемую ЛЧХ №1, которая обеспечивает большой коэффициент передачи системы.

При проектировании или исследовании приводов станков с ЧПУ должны быть известны параметры точности при максимальных значениях скоростей и ускорений. В связи с этим входное воздействие необходимо подобрать так, чтобы оно было эквивалентно заданным параметрам. В качестве типового воздействия для электроприводов станков обычно используется гармонический сигнал.


, (2.16)

, (2.17)

. (2.18).

где

- обобщенная координата, для которой заданы:

- максимальная скорость;

- допустимое ускорение;

- скоростная ошибка.

Для заданных по условию курсовой работы значений

,
,
определим эти параметры:

,
,

с-1,

м

Таким образом, эквивалентное гармоническое воздействие будет иметь вид:


(2.19)

При этом должно выполняться условие, что ошибка будет меньше или примерно равна отношению

к модулю частотной характеристики:

, (2.20)

. (2.21)

В низкочастотной области

, следовательно:

(2.22)

дб

Определим

,
- отношение допускаемого ускорения к ошибке. Для создания запаса кривую поднимают на 3 дб вверх
с-1. Без подъема кривой на 3 дб вверх
с-1.

Коэффициент передачи системы:

дб.

, (2.23)

где М – коэффициент колебательности, в моем случае М=1.2. Тогда:

с-1

Частота, при которой участок высокочастотной ЛЧХ переходит в наклон 0 дб/дек определится:

с-1 (2.24).

Для обеспечения требуемой точности и коэффициента колебательности системы, а в конечном итоге, требуемой устойчивости, необходимо обязательное соблюдение условия, чтобы участок ЛЧХ, соответствующий наклону 0 дб/дек лежал не ниже значения, вычисленного по следующей формуле:

дб.

Таким образом, результирующую ЛАЧХ мы получим после подъема исходной ЛАЧХ на 4.682 дб, что показано на рисунке 2.3

Определим коэффициент передачи “новой” системы.

дб.

- такое значение без подъема будет у ЛАЧХ при наклоне 0 дб/дек

Рисунок 2.2 – Желаемая ЛАЧХ цифрового электропривода.

2.4 Определение дискретной передаточной функции регулятора

скорости

Желаемая дискретная передаточная функция представлена выражением (предпосылки для ее записи представлены в предыдущем подпункте) (2.25)

(2.25)

(2.26)

. (2.27)

Согласно формулам (2.10) и (2.25) находим параметр, характеризующий запаздывание:

(2.28)

– ДПФ регулятора скорости.

Коэффициенты ДПФ имеют следующие значения (рассчитаны в MathCAD):

3

Оценка качества регулирования привода в

переходных и установившихся режимах

3.1 Определение реакции системы на единичное воздействие

Определение реакции системы на единичное воздействие производится с помощью программы MATLAB 6.

При использовании MATLAB 6 производится имитация или моделирование процессов, происходящих в цифровом электроприводе. Каждый элемент представлен своей передаточной функцией, а результат моделирования – переходный процесс выводится на экран осциллографа (Scope).

Рисунок 3.1 – Структурная схема ЦЭП, полученная на MATLAB.

Рисунок 3.2 – Переходной процесс, полученный на MATLABпо расчётным коэффициентам регулятора.


Коэффициент колебательности у такой системы:

.

Время переходного процесса:

с или 100 мс.

Перерегулирование

.

Система удовлетворяет заданным требованиям.

3.2 Определение реакции системы на линейно-возрастающее

воздействие

Этот эксперимент проводится для определения скоростной ошибки системы. Для этого на вход системы подадим линейно-нарастающий сигнал (угол нарастания 45°, т.е. К=1). Этот сигнал можно получить путём интегрирования единичного ступенчатого воздействия (см. рис. 3.3):

Рисунок 3.3 – Структурная схема системы при подаче линейно-нарастающего воздействия.


На выходе системы имеем переходной процесс:

Рисунок 3.4 – Переходной процесс при подаче линейно-нарастающего воздействия.