Смекни!
smekni.com

Изготовление коробки пружинной (стр. 2 из 5)

Операция 040 Фрезерная: Фрезеровать 6 мест в 220±0,07 мм.

Операция 045 Расточная: 6 отв.: Сверлить Æ36+0,039, расточить Æ39+0,18 на глубину 28мм, расточить фаску 2х450, нарезать резьбу G1 ¼ - A.

Операция 050 Сверлильная: Нарезать резьбу 6 отв. М8-6Н/8,4х1200 на глубину 18 мм.

Операция 051 Малярная: Произвести покрытие поверхностей согласно ТУ.

Операция 052 Технический контроль: Проверить чертежные размеры.

7. Расчет операционных припусков

В подъемно – транспортном машиностроении используют два метода определения припусков на обработку: опытно – статистический и расчетно-аналитический.

При расчетно-аналитическом методе промежуточный припуск на каждом технологическом переходе должен быть таким, чтобы при его снятии устранялись погрешности обработки и дефекты поверхностного слоя, полученные на предшествующих переходах, а также исключались погрешности установки обрабатываемой заготовки, возникающие на выполняемом переходе.

Припуском называется слой материала удаленный с поверхности заготовки для достижения заданных свойств обработанной поверхности

Расчетно-аналитический метод.

Наименование детали – коробка пружинная. Материал – сталь 25Л ГОСТ 977-88. Поверхность для расчета припуска - Æ155-0,06 мм.

Вид заготовки и технологическая операция Элементы припуска (мкм) Допуск на изготовление δ (мм)
Rz Т ρ e
Заготовка-литьё 400 100 - 1
Черновое точение 100 100 83 100 0,63
Чистовое точение 50 50 - 100 0,16

Точность и качество поверхности после мех.обработки устанавливается по [1] стр.8 табл.4.

Допуск на изготовление детали выбираются по таблицам: для заготовок из проката по ГОСТ 2590-71 ([1] стр.169 табл.62) и на размеры подлежащие обработки по ГОСТ 25347-82 ([1] стр.8 табл.8).

Элементы припусков (Rz и Т) назначаем по [1] стр.180-181 табл.1 и 5 в зависимости от метода поверхности заготовки и состояния проката.

Для определения элементов припуска ρ и e ([3] стр.62 формула 3.26) необходимо произвести следующие действия:

Определяем отклонение расположения заготовки ρз в зависимости от крепления детали:

Погрешность установки в трехкулачковом патроне ([1] стр.42 табл.13)

e=100 мкм

При обработке поверхностей вращения:

,

где: zimin, zimax – минимальное и максимальное значение припуска на обработку на выполняемом переходе;

– высота микронеровностей поверхности на предыдущем переходе;

Ti-1 – глубина дефектного слоя после предыдущего перехода;

ρi-1 – пространственное отклонение в расположении обрабатываемой поверхности после предыдущего перехода;

– погрешность установки обрабатываемой заготовки, возникающая на выполняемом переходе;

δi-1 и δi – допуски на размер заготовки соответственно на предыдущем и выполняемом переходах.

Минимальный припуск на черновую обработку:

2Z1min = 2ּ(RZ0 + Т0 +

) = 2ּ(400 +
) = 1000 мкм

Максимальный припуск на черновую обработку:

2Z1max = 2Z1min + δ0 – δ1 =2000+1000-6300 = 2370 мкм.

Минимальный припуск на чистовую обработку:

2Z2min = 2ּ(RZ1 + Т1 +

) = 2ּ(100 +100 +
) = 660 мкм

Максимальный припуск на чистовую обработку:

2Z2max = 2Z2min + δ1 - δ2 =2 ּ 660 + 6300 – 160 = 1790 мкм

Расчетные размеры заготовки на промежуточных переходах при обработке тел вращения:

,

где: dimax , dimin – максимальное и минимальное значения размера заготовок (например, диаметра) на выполняемом переходе;

di-1max , di-1min – то же, на предыдущем переходе.

черновая обработка:

d1min = d2min + 2Z2min = 155 + 1,79 = 156,79 (мм)

d1max = d2max + 2Z2max =154,94 + 0,66 = 155,6 (мм)

заготовка:

d0min = 156,79 + 2,37 = 158,16 (мм)

d0max = 155,6 + 1 = 156,6 (мм).

Расчетный минимальный припуск 2Zmin (мкм) Предельные значения припусков (мкм) Предельные значения (мм)
2Zmin 2Zmax dmаx dmin
Заготовка - - 158,16 155,6
Черновое точение 1000 2370 156,37 155,6
Чистовое точение 660 1790 155 154,94

По максимальным размерам заготовки выбираю Æ159 мм по ГОСТ 2590-71.

В связи с тем, что расчетно-аналитический метод определения припусков трудоемок, для остальных поверхностей припуск определяется опытно-статистическим методом. Он основан на широком использовании накопленного опыта передовых машиностроительных предприятий. Следует помнить, что данный метод не позволяет учитывать конкретные условия обработки, а, следовательно, во многих случаях во избежание появления брака возможно завышение размеров.

На все остальные поверхности получаем припуски опытно – статистическим методом.

8. Расчет режимов резания

Режим резания является одним из главных факторов технического процесса механической обработки, определяющий нормы времени на операцию. В связи с этим необходимо в полной мере использовать режущие свойства инструмента и производственные возможности оборудования.

При назначении и расчете элементов режимов резания следует учитывать следующие факторы: материал и состояние заготовки; тип и размеры инструмента, материал его режущей части, тип и состояние оборудования.

Элементы режима резания, как правило, устанавливаются в следующем порядке:

- назначается глубина резания t;

- назначается подача режущего инструмента S;

- рассчитывается скорость резания V;

- рассчитывается сила резания Pz или крутящий момент на шпинделе станка Мкр;

- определяется мощность, расходуемая на резание N;

- выбирается металлорежущее оборудование.

Глубина резания t при черновой обработке назначается такой, чтобы был снят весь припуск за один проход или большая его часть. При чистовой обработке припуск снимается за два и более прохода. На каждом последующем проходе следует назначать меньшую глубину, чем на предшествующем, учитывая преобладания точности размеров и шероховатости обработанной поверхности.

Подача S при черновой обработке выбирается максимально возможной, исходя из жесткости и прочности системы СПИД, прочности твердосплавной режущей пластины и других ограничивающих факторов. При чистовом точении подача назначается в зависимости от требуемой степени точности и шероховатости обрабатываемой поверхности.

Скорость резания V рассчитывается по эмпирическим формулам, установленным для каждого вида обработки.

Сила резания раскладывается на составляющую тангенциальную Pz, радиальную Рy и осевую Рx силы резания. Главной составляющей силой, определяющей расходуемую на резание мощность и крутящий момент на шпинделе станка, является сила Рz которая рассчитывается по эмпирической зависимости.

Расчет режима резания при подрезке торцов.

Глубина резания t = 4 мм;

Принимаем подачу S = 1,2 мм/об; ([2] стр.266 табл.11)

Число проходов i=1;

Режущий инструмент: резец токарный для обработки и подрезания торцов с твердосплавными пластинами по ГОСТ 19043-80, опорные пластины ГОСТ 19073-80, стружколом по ГОСТ 19084-80 с главным углом в плане

мм.

Скорость резания определяется по формуле:

V =

,

где

= 340 – коэффициент ([2] стр.269 табл.17);

x = 0,15; y = 0,45; m = 0,2 – показатели степени ([2] стр.269 табл.17);

T = 60 мин – среднее значение стойкости при одноинструментной обработки ([2] стр.268);

- обобщающий поправочный коэффициент, учитывающий фактические условия резания;

- коэффициент, учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания ([2] стр.261 табл.1), где
=1 – коэффициент; n = 1 – показатель степени ([2] стр.262 табл.2);

- поправочный коэффициент, учитывающий влияние состояния поверхности заготовки на скорость резания ([2] стр.263 табл.5);

- поправочный коэффициент, учитывающий влияние инструментального материала на скорость резания ([2] стр.263 табл.6);