Смекни!
smekni.com

Изготовление типовой детали "фланец" (стр. 2 из 3)

1). Сверление и рассверливание при этом достигается 11квалитет точности, шероховатость поверхности Rz = 80 мкм;

2). Зенкерование чистовое, при этом достигается 9 квалитет точности, шероховатость поверхности Rz = 40 мкм;

3). Развертывание точное, при этом достигается 7 квалитет точности, шероховатость поверхности Ra = 2,5 мкм;

Для выполнения токарных операций будем использовать станок вертикально-сверлильный 2Н135.

Выберем следующие инструменты:

зенкер насадной со вставочными ножами из быстрорежущей стали.

штангенциркуль ШЦЦ-II-250-0,01.

Расчет припусков.

Общий припуск на обработку поверхности:

номинальный 2Zном = Dотв – D = 100 – 94 = 6мм;

максимальный 2Zmax = D

– Dmin = 100,035 – 92,8 = 7,235 мм;

минимальный 2Zmin= D

– Dmax = 100 – 96,4 = 3,6 мм.

В соответствии с выбранным маршрутом обработки данной поверхности разобьем общий припуск на межоперационные:

Припуск на сверление определим по выражению:

2Zсвер = 2Zобщ – (2Z

+ 2Z
) = 6 – (0,32+0,1) = 5,58мм.

Максимальные и минимальные операционные припуски определим следующим образом:


2Z

= D
– D
,

где D

– наибольший предельный размер после обработки; D
– наименьший предельный размер до обработки.

2Z

= 99,8 – 92,8 = 7мм;

2Z

= 99,987 – 99,58 = 0,407мм;

2Z

= 100,035 – 99,9 = 0,135мм.

2Z

= D
–D
,

где D

– наименьший предельный размер после обработки; D
– наибольший предельный размер до обработки.

2Z

= 99,58 – 96,4 = 3,18мм;

2Z

= 99,9 – 99,8 = 0,1мм;

2Z

= 100 – 99,987 = 0,013мм.

Таблица 2

Операция Получаемый размер Dmax,мм Dmin,мм 2Z,мм 2Zmax,мм 2Zmin,мм
0 Штамповка
94
96,4 92,8
1 Сверление
99,58H11(+0,220)
99,8 99,58 5,58 7 3,18
2 Зенкерование
99,9H9(+0,087)
99,987 99,9 0,32 0,407 0,1
3 Развертывание
100H7(+0,035)
100,035 100 0,10 0,135 0,013

Наименование Значение
Наибольшая длина обрабатываемого изделия, мм: 1000
Высота оси центров над плоскими направляющими станины, мм: 215
Пределы оборотов, об/мин 12,5–1600
Пределы подач, мм/об
Продольных 0,05–2,8
Поперечных 0,002–0,11
Мощность электродвигателя главного привода, кВт 11
Наибольший диаметр изделия, устанавливаемого над станиной, мм 400
Наибольший диаметр обработки над поперечными салазками суппорта, мм 220
Наибольший диаметр прутка, проходящего через отверстие в шпинделе, мм 50
Габаритный размеры станка, мм
Длина 2795
Ширина 1190
Высота 1500
Масса станка, кг 3005

6. Техническая характеристика станков

Таблица 3. Станок токарно – винторезный 16К20

Таблица 4. Станок вертикально – сверлильный 2Н135:

Наименование Значение
Размеры конуса шпинделя Морзе 4
Расстояние оси шпинделя до направляющих колонны, мм 300
Расстояние от торца шпинделя, мм:до столадо плиты 30–750700–1120
Наибольшие (установочное) перемещение сверлильной головки, мм 170
Перемещение шпинделя за один оборот штурвала, мм 122,46
Рабочая поверхность стола, мм 450–500
Наибольший ход стола, мм 300
Количество скоростей шпинделя 12
Количество подач 9
Пределы подач, мм/об 0,1–1,6
Мощность электродвигателя главного движения, кВт 4,0
Габарит станка: длина, ширина, высота, мм 1030–835–2535
Масса станка, кг 1200

Таблица 5. Круглошлифовальный станок 3М150:

Наименование Значение
масса 2600
Габарит станка: длина, ширина, высота, мм 2000–1370–1520
Мощность электродвигателя главного движения, кВт 4,0
макс. скорость шпинделя 2350
Наибольшая длина обрабатываемой детали, мм 360
Наибольший диаметр обрабатываемой детали, мм 100

7. Расчет режимов резания и норм времени

Расчет режимов резания и норм времени выполним для чернового точения: диаметр заготовки D = 300мм, глубина резания t = 1,7 мм, длина L =50мм, материал заготовки – сталь углеродистая конструкционная 30ХГС.

Для выполнения данной операции выберем проходной упорный резец со следующими параметрами: главный угол резца в плане φ = 900; вспомогательный угол резца в плане φ1 = 100; главный передний угол γ = 100; угол наклона главной режущей кромки λ =00; сечение державки резца h = 25мм; b = 16мм; угол при вершине резца r = 1,0мм.

Зададим стойкость резца Т = 60 мин. Выберем подачу S = 0,8 мм/об

Рассчитаем скорость резания, определив все необходимые коэффициенты:

Cv=340; Xv= 0,15; Yv= 0,45; Mv= 0,20; Kμν= 1; Kuv= 1; Knv= 0,8; Kφν= 0,7; Kφ1v= 1; Krv= 0,94; Kqv= 1; Kov= 1.

Коэффициент Kv равен:

Kv=Kμv×Kuv×Knv×Kφv×Kφ1v×Krv×Kqv×Kov= 1·1·0,8·0,7·1·0,94·1·1= 0,53.

Скорость резания равна:

v=Cv·Kv /Tmv ·txv ·Syv = 340·0,53/600,20·1,70,15·0,80,45 = 359,6 м/мин.

Частота вращения шпинделя:

n =1000v/πD = 1000·359,6/3,14·300 = 381,7 мин–1.

Уточнив по паспортным данным станка 16К20 ближайшее меньшее значение, примем n = 350 мин–1.

Тогда действительная скорость резания равна:

v=

=
= 329,7 м/мин.

Рассчитаем составляющую силы резания Pz.

Cpz= 300; Xpz= 1,0; Ypz= 0,75; npz= –0,15; Kμpz=1; Kγpz= 1; Kλpz= 1; Kφ1v= 1; Krpz= 1;

Kφpz= 0,89;

Коэффициент

Kpz= Kμpz× Kφpz× Kγpz× Kλpz× Krpz= 1×0,89×1×1×1 = 0,89.

Составляющая силы резания:

Pz= 10× Cpz×tXpz×SYpz×vnpz × Kpz= 10×300×1,7×0,80,75×329,7–0,15×0,89 = 1610H.


Мощность Nрез потребляемую на резание, определим следующим образом:

Nрез=

=
= 8,7 кВт.

Мощность электродвигателя главного привода станка 16К20 Nдв = 11кВт. Мощность на шпинделе станка с учетом КПД станка равна: Nшп= Nдв×ηст= 11×0,85 = 9,35 кВт. Условие Nрез≤ Nшп выполняется, следовательно, станок выбран верно.

Норма штучного времени состоит из следующих составляющих:

Тшт = Товобсотд,