Заметное влияние на тепловой режим при выплавки стали в современных ДСП оказывают различные способы интенсификации технологического теплового процессов.
Сложность тепловых и технологических процессов, отсутствие надежного простого непрерывного контроля температуры металла создают значительные проблемы при разработке математических моделей теплового или температурного режимов в жидкие периоды электродуговой плавки. Как правило, существующие математические модели температурного режима электроплавки являются расчетно-статистическими, т.е. статическими по своей сути и не позволяют эффективно и целенаправленно изменять параметры энергетического режима в динамике по ходу процесса выплавки стали в ДСП.
Достаточно удобная и доступная для практической реализации детерминированная математическая модель теплового режима ДСП предложена специалистами Чехословакии. Эта контролирующая модель основана на составлении мгновенных тепловых балансов. Для успешного функционирования этой модели одним из основных параметров является непрерывный контроль температуры металла и внутренней поверхности огнеупорной кладки.
Измерение температуры свода электросталеплавильной печи
Куполообразный водохлаждаемый свод несет наибольшую функциональную нагрузку. В своде предусмотрены технологические отверстия для отвода плавильных газов, подачи сыпучих, ввода трех электродов и отбора импульса давления в рабочем пространстве.
Для повышения стойкости свода ДСП делают водоохлаждаемую футеровку центральной части свода, где расположены электроды, чтобы избежать межфазовых замыканий. Стойкость таких сводов составляет 5000-6000 плавок.
Расход воды на охлаждение свода электропечи составляет 550 м3/ч.
При использовании водоохлаждаемых элементов свода важным параметром, ограничивающим подвод тепла, является температура воды на сливе. Эта температура не должна превышать 65°С, т.е. предела начала выпадения солей.
Для данной электропечи ДСП – 180 температура воды составляет на сливе составляет 45-50°С
При превышении температуры выше 65°С возможно аварийное остановление электропечи.
Рис. 8. Основные элементы комплекса ДСП: 1 - свод; 2 - рабочее окно; 3 - сталевыпускное отверстие; 4 - электроды; 5 - электрододержатели; 6 -короткая сеть; 7 - трансформатор; 8 - кислородная фурма; 9 - отвод отходящих газов; 10 - загрузочная воронка; 11 – шомпольный термозонд.
Принцип измерения температуры шомпольным термозондом
Шомпольный термозонд представляет собой устройство периодического действия, служащее для измерения интегральной интенсивности падающего теплового потока по температурному перепаду в стенке теплоприемника, охлаждаемого с внутренней стороны водой. Механический автоматизированный привод обеспечивает периодическую очистку наружной поверхности теплоприемника от любых отложений. Теплоприемник достаточно близок к теплоприемнику сферического излучения. Он имеет форму удлиненного цилиндра, причем рабочей является его боковая поверхность, это конструктивно облегчает очистку и дает возможность относительно просто путем увеличения длины теплоприемника практически полностью избавиться от стоков тепла, минующих его чувствительный элемент.
Конструктивные особенности
Термозонд состоит из трех основных узлов (рис.9): водоохлаждаемого цилиндрического шомпола 1 с чувствительным элементом на конце, водоохлаждаемой фурмы 2 пневмоцилиндра 3, приводящего в движение шомпол. Фурму устанавливают в кладке свода или стен печи, с кольцевым резцом 4 для очистки поверхности шомпола погружают в кладку до внутренней его поверхности или выдвигают в рабочее пространство. В отличие от станционарных тепломеров чувствительный элемент прибора выдвигает вместе с шомполом в рабочее пространство печи только на время измерения, а затем убирают до следующего замера внутрь фурмы. В результате кратковременного погружения шомпола в печь поверхности чувствительного элемента загрязняется незначительно, точность измерения не снижается. Небольшой налет плавильной пыли, брызг металла и шлака, успевший образоваться на цилиндрической поверхности чувствительного элемента во время измерения, очищают кольцевым резцом 4. Таким образом устраняется основное препятствие, мешавшее успешному применению водоохлаждаемых приборов полусферическому излучения в сталеплавильных печах. В принятой компановке термозонда жесткое соединение пневмоцилиндра с фурмой полностью освобождает кладку печи от усилий, развивающихся на штоке поршня при очистке шомпола.
Шомпол 1охлаждается водой, поступающей к его штецерам по гибким шлангам. Чувствительным элементом шомпола служит дифференциальная батарея миниатюрных хромель-алюмелевых термопар 5, горячие и холодные спаи которых расположены на разных расстояниях от наружной поверхности шомпола в глухих концах соответственно наклонных и прямых отверстий 6, высверленных с торца термоцилиндра 7 по всей его окружности. Таким образом, термобатарея фиксирует температурный перепад по толщине цилиндрической стенки термоцилиндра между заданными ее сечениями. Этот перепад температуры ∆t определяется удельным тепловым потоком, проходящим через стенку теплоприемника, который в свою очередь связан с величиной падающего теплового потока. Торец термоцилиндра 7 закрыт медным наконечником 8, наружный буртик которого защищает кольцевой паз 9, соединяющий все отверстия 6 с трубками 10, служащими для выводаконцов термобатареи.
Рис. 9. Схема шомпольного термозонда.
Принципы действия
В температурных условиях рабочего пространства сталеплавильной печи собственным излучением шомпала, температура наружной поверхности которого не превышает 500° С, можно пренебречь. Поэтому температур перепад темпертур ∆t между сечениями термоцилиндра в которых расположены горячие и холодные спаи термопар определяется уравнением:
λш — коэффициент теплопроводности стенки термоцилиндра;
δ — расстояние между сечениями термоцилиндра, в которых расположены горячие и холодные спаи;
φ — коэффициент, учитывающий кривизну стенки, влияние сверлений и термобатареи на распространение теплового потока;
αш — поглощательная способность поверхности термоцилиндра;
qпадш; qконш— падающие на поверхность термоцилиндра удельные лучистый и конвективный тепловые потоки.
Из уравнения Теплового баланса участка внутренней поверхности футеровки, расположенного вблизи шомпола
можно получить выражение для ее абсолютной температуры:
δо — константа черного излучения;
εф, αф - степень черноты по излучению и поглощательная способность поверхности футеровки;
qпадф, qконф- тепловые потоки, падающие на поверхность футеровки (лучистый и конвективный);
qпотф, qаккф - тепловой поток, теряемый в окружающую среду, и поток аккумулируемый кладкой;
qпрф - тепловой поток, проходящий через внутреннюю поверхность футеровки, равный
qпотф + qаккф
Тепловоспринимающие поверхности чувствительного элемента шомпола и участка футеровки вблизи термозонда ориентированы пространстве неодинаковы, так что соответствующие угловые коэффициенты между этими поверхностями и факелом, дугами, кладкой, водоохлаждаемыми конструкциями и другими элементами рабочего пространства,сильно отличающимися по температуре различны. В связи с указанными особенностями успешно в метрологическом отношении применение шомпольных термозондов требует соблюдения основных условий вытекающих из анализа определяющих уравнений теплообмена, относящихся к шомполу и футеровке
Во-первых, так же как в случае применения торцовых датчиков полусферического излучения, необходимо, чтобы конвективные тепловые потоки qпадш; qконш поток (qпотф +qаккф)проходящий через внутренне поверхность кладки, были весьма малы по сравнению с лучистыми потоками qпад. Во-вторых, необходима достаточно высокая степень изотропности лучистого поля печи вблизи футеровки, обеспечивающая равенство тепловых потоков на футеровку qпадф и на шомпол qпадш или по крайней мере достаточно тесную корреляционно зависимость между ними. Только при этих условиях постоянстве коэффициентов, входящих в уравнения, зависимость между tф и показаниями датчика Eш изменяющимися прямо пропорционально ∆tш становится практически однозначной.
Расчеты показывают, что на сталеплавильных печах первое условие всегда выполняется с достаточной точностью. Исследования, проведенные на мартеновских печах при помощи специальных датчиков, измеряют одновременно потоки q, подтвердили соблюдение и второго условия. Было установлено, что эти потоки близки по величине и связаны тесной пропорциональной зависимостью, одинаковой для любых периодов плавки. При высоких значениях оптической плотности и излучающей способности сильно запыленных газов, заполняющих рабочее пространство печи равенство qпадф = qпадш соблюдается с большой точностью. Такие условия измерения tф, типичные для современных сталеплавильных агрегатов, являются идеальны применении шомпольных термозондов.