Смекни!
smekni.com

Кінематичний аналіз плоских важільних, кулачкових і зубчастих механізмів (стр. 2 из 8)

Напрямок кутової швидкості ланки AВ визначиться, якщо перенести вектор

швидкості крапки B на схемі механізму й установити напрямок обертання ланки AB щодо крапки А під дією цього вектора. У розглянутому випадку в положенні 1 механізму кутова швидкість
спрямована проти годинникової стрілки.

Напрямок кутової швидкості шатуна 4 визначає вектор

, якщо його перенести із плану швидкостей у крапку D на схемі механізму. У положенні 1 кутова швидкість
спрямована проти годинникової стрілки.

Таблиця 2.1

VО VА VB VS2 VС VD VS4 VВА V ω1 ω2 ω4
м/з с-1
0 0 20,8 0 14 20,8 20,8 20,8 20,8 0 188,4 60,03 0
1 0 20,8 13,4 16,6 20,8 21,2 20,4 18 10,8 188,4 51,95 31,17
2 0 20,8 21,2 20,4 20,8 13,4 16,6 10,8 18 188,4 31,17 51,95
3 0 20,8 20,8 20,8 20,8 0 0 0 20,8 188,4 0 60,03
4 0 20,8 15 18,2 20,8 13,4 16,6 10,8 18 188,4 31,17 51,95
5 0 20,8 7,6 15,6 20,8 21,2 20,4 18 10,8 188,4 51,95 31,17
6 0 20,8 0 14 20,8 20,8 20,8 20,8 0 188,4 60,03 0
7 0 20,8 7,6 15,6 20,8 15 18,4 18 10,8 188,4 51,95 31,17
8 0 20,8 15 18,2 20,8 7,6 14,8 10,8 18 188,4 31,17 51,95
9 0 20,8 20,8 20,8 20,8 0 0 0 20,8 188,4 0 60,03
10 0 20,8 21,2 20,4 20,8 7,6 14,8 10,8 18 188,4 31,17 51,95
11 0 20,8 13,4 16,6 20,8 15 18,4 18 10,8 188,4 51,95 31,17

2.3 Побудова планів прискорень

Послідовність побудови плану прискорень також визначається формулою будови механізму. Спочатку визначимо прискорення провідної крапки A. При

початкової ланки ОА крапка А має тільки нормальне прискорення:

Прискорення крапки А аА на плані прискорень зобразимо вектором

, що спрямований по ланці
ОА від крапки А к крапці О. Масштабний коефіцієнт плану прискорень
вибираємо стандартним.

Вектор

і є план прискорень початкової ланки ОА (кривошипа).

А тепер побудуємо план прискорень групи 2, 3. Тут відомі прискорення крапок А и В. Запишемо два векторних рівняння, розглядаючи рух крапки B відносно А и стосовно крапки B0:

де

- нормальне прискорення у відносному русі крапки B стосовно крапки А;

- тангенціальне прискорення в тім же русі;

- прискорення крапки B0 напрямної X–X;

- прискорення крапки B повзуну щодо крапки B0 приналежний.

Вектор нормального прискорення

спрямований паралельно АB від крапки B до крапки А. Величина цього прискорення

На плані прискорень через крапку а проводимо пряму, паралельну ланці АB і відкладаємо на ній у напрямку від крапки B до крапки А вектор

, що представляє в масштабі
прискорення


Через крапку n1 проводимо пряму в напрямку вектора тангенціального прискорення

перпендикулярно до ланки АB.

У відповідності із другим рівнянням через полюс p і співпадаючу з ним крапку B0 (прискорення

для нерухливої напрямної) проводимо пряму в напрямку прискорення
паралельно напрямної X–X. Крапка b перетинання цих прямих визначає кінець вектора абсолютного прискорення крапки B.

Величина тангенціального прискорення

Прискорення центра мас S2 ланки АB визначається за допомогою теореми подоби. Із пропорції

визначаємо положення крапки S2 на плані прискорень

Отже, величина прискорення крапки S2


А зараз визначимо прискорення крапок ланок групи, утвореної ланками 4 і 5. Розглянемо рух крапки D щодо крапки C, а потім стосовно крапки D0.

Прискорення крапки D визначиться графічним рішенням наступних двох векторних рівнянь:

У першому рівнянні нормальне прискорення

спрямоване по шатуні DC (від крапки D до крапки C). Величина прискорення

Тангенціальне прискорення

перпендикулярно до ланки DC, а величина його визначається побудовою плану прискорень.

Прискорення

, а прискорення
крапки D повзуну щодо крапки D0 напрямної визначиться побудовою плану прискорень.

Відповідно до першого рівняння на плані прискорень через крапку b проводимо пряму, паралельну ланці DC, і відкладаємо на ній у напрямку від крапки D до крапки C вектор

, що представляє в масштабі
прискорення


Через крапку n2 проводимо пряму в напрямку вектора тангенціального прискорення

перпендикулярно до ланки DC. Потім через полюс p і співпадаючу з ним крапку D0 проводимо пряму в напрямку прискорення
паралельно напрямної X–X. Крапка d перетинання цих прямих визначає кінець вектора повного прискорення крапки D

Величина тангенціального прискорення

Прискорення центра мас S4 ланки CD визначається із пропорції

звідки

Отже, величина прискорення крапки S4

Визначимо величини кутових прискорень ланок:


Напрямок кутового прискорення e4 шатуна 4 визначить вектор

, перенесений у крапку D на схемі механізму. Ланка буде обертатися по годинникової стрілки.

У такій же послідовності виробляється побудова плану прискорень для другого заданого положення механізму.

Таблиця 2.2

e2 e4
м/з2 с-2
0 3904,4 5175 0 1248,6 3904,4 4837,5 4125 0 1350 2625 0 11904,76
2 3904,4 1350 3412,5 336,62 3904,4 2850 1875 935,1 3975 3825 9848,5 5411,3

2.4 Побудова кінематичних діаграм для крапки В