Смекни!
smekni.com

Кінематичний аналіз плоских важільних, кулачкових і зубчастих механізмів (стр. 4 из 8)

З'єднавши крапку g із крапкою а на плані сил, одержимо вектор

, що зображує собою шукану реакцію
, величина якої

.

Реакція в шарнірі D

визначається вектором cg плану сил. Величина реакції

.

3.3 Силовий розрахунок групи Ассура, що складає з ланок 2 і 3

Групу з ланок 2 і 3 вичерчуємо окремо в масштабі довжин

=0,0025 м/мм і у відповідних крапках прикладаємо сили ваги й сили інерції ланок. Умова рівноваги групи виразиться наступним векторним рівнянням:

У даному рівнянні невідомі дві реакції

й
. Напрямок реакції
відомо: вона перпендикулярна до напрямного поршня 3.

Величину реакції

визначимо з рівняння моментів всіх сил, прикладених до ланок 2 і 3, щодо крапки А: R03=6890,5 Н.

Для визначення реакції

будуємо план сил у масштабі
. З'єднавши крапку g із крапкою а на плані сил, одержимо вектор gа, що зображує собою шукану реакцію
, величина якої

Реакція в шарнірі B

визначається вектором
плану сил. Величина реакції

3.4 Силовий розрахунок початкової ланки

Вичерчуємо окремо початкова ланка в масштабі

й у прикладаємо діючі сили: у крапці А реакцію
, і силу, що
врівноважує, перпендикулярно до ланки ОА.

Векторне рівняння рівноваги початкової ланки має вигляд:

.

Величину сили, що врівноважує, визначаємо з рівняння моментів всіх сил щодо крапки О.


У масштабі

будуємо план сил початкової ланки, з якого визначаємо реакцію
в шарнірі О. Величина реакції:

3.5 Визначення сили, що врівноважує, по методу Н. Жуковського

Більше простим методом визначення сили, що врівноважує, є метод Н.Е. Жуковського.

У довільному масштабі будуємо план швидкостей, повернений на 90 ((у нашім випадку за годинниковою стрілкою), і у відповідних крапках його прикладаємо сили тиску газу на поршні, сили ваги ланок, сили інерції ланок і моменти сил інерції, що врівноважує силу.

Момент сил інерції

представляємо у вигляді пари сил
і
, прикладених у крапках A і В, із плечем пари
. Величина цих сил:

Момент сил інерції

представляємо у вигляді пари сил
і
, прикладених у крапках С и D, із плечем пари
. Величина цих сил:

Повернений план швидкостей із прикладеними силами, розглянутий як твердий важіль із опорою в полюсі, буде перебувати в рівновазі.

Становимо рівняння моментів всіх сил щодо полюса плану швидкостей, взявши плечі сил по кресленню в мм:


Величина сили, що врівноважує, отриманої при кінетостатичному розрахунку

.

Розбіжність результатів визначення сили, що врівноважує, методом планів сил і методом Жуковського

.

3.6 Визначення миттєвого механічного коефіцієнта корисної дії механізму

Миттєвий механічний коефіцієнт корисної дії механізму визначимо для розрахункового положення 2.

Уважаємо, що радіуси цапф шарнірів задані r = 20 мм, коефіцієнти тертя в шарнірах і напрямних повзунів також задані й рівні відповідно

.

Припустимо, що всі виробничі опори в механізмі зводяться до опору тертя. Реакції в кінематичних парах для даного положення механізму визначені силовим розрахунком і рівні

Для визначення потужностей, що витрачаються на тертя в різних кінематичних парах, необхідно знайти відносні кутові швидкості в шарнірах і відносні швидкості в поступальних парах.


Потужності, затрачувані на тертя в кінематичних парах у цей момент часу, рівні:

Загальна потужність сил тертя:

Потужність рушійних сил у цей момент часу

3.7 Дослідження руху механізму й визначення моменту інерції маховика

Тому що усередині циклу усталеного руху машини не спостерігається рівності роботи рушійних сил і роботи сил опору й сталості наведеного моменту інерції механізму, те кутова швидкість (провідної ланки виявляється змінною. Величина коливань цієї швидкості оцінюється коефіцієнтом нерівномірності ходу

де wmax – максимальна кутова швидкість;

wmin – мінімальна кутова швидкість;

wср. – середня кутова швидкість.

За середню кутову швидкість можна прийняти номінальну швидкість

.

Коливання швидкості провідної ланки механізму повинна регулюватися в заздалегідь заданих межах. Це регулювання звичайно виконується відповідним підбором мас ланок механізму. Маси ланок механізму повинні підбиратися так, щоб вони могли накопичувати (акумулювати) всі збільшення кінетичної енергії при перевищенні роботи рушійних сил над роботою сил опору.

Роль акумулятора кінетичної енергії механізму звичайно виконує маховик. Тому в наше завдання входить підібрати масу маховика такий, щоб даний механізм міг здійснити роботу із заданим коефіцієнтом нерівномірності руху

.

Для розрахунку маховика скористаємося методом енергомас. По цьому методі момент інерції маховика визначається по діаграмі енергомас, що характеризує залежність збільшення кінетичної енергії механізму від наведеного моменту інерції механізму.

Тому що збільшення кінетичної енергії дорівнює різниці роботи рушійних сил і роботи сил опору, то для побудови цієї діаграми необхідно побудувати спочатку діаграми наведених моментів рушійних сил і сил опору.

Наведений до провідної ланки момент сил для кожного положення досліджуваного механізму.

Для розрахункового 2-го положення:

Розрахунок наведеного моменту рушійних сил для інших положень механізму зводимо в таблицю 3.1

Таблиця 3.1-результати розрахунку наведеного моменту рушійних сил

0 153860 0 -4615,8 20,8 -509,6
1 107702 13,4 -15386 21,2 5929
2 40003,6 21,2 -49235,2 13,4 999,6
3 15386 20,8 153860 0 1698,7
4 10770,2 15 104624,8 13,4 8299
5 9231,6 7,6 55389,6 21,2 6605,2
6 7693 0 18463,2 20,8 2038,4
7 0 7,6 12308,8 15 980
8 0 15 9231,6 7,6 372,4
9 -3077,2 20,8 7693 0 -339,7
10 -13847,4 21,2 0 7,6 -1558,2
11 -49235,2 13,4 0 15 -3501,9

На підставі дані таблиці будуємо діаграму зміни Мд рушійних сил у функції кута повороту початкової ланки. Масштаб по осі ординат вибираємо

, масштаб по осі абсцис при довжині діаграми l=180 мм