Смекни!
smekni.com

Кінематичний аналіз плоских важільних, кулачкових і зубчастих механізмів (стр. 7 из 8)

h= 2,25m =2,25 × 9 = 20,25 мм.

Для побудови профілів зачеплення зубчастих коліс вибираємо масштаб 2:1, значить на кресленні всі отримані значення величин збільшитися в 2 рази.

Побудова профілів зубів проводимо в наступному порядку:

- відкладаємо міжосьова відстань aw (O1O2 на кресленні);

- Радіусами rw1 і rw2 проводимо початкові окружності коліс. Крапка P торкання їх є полюсом зачеплення;

- проводимо основні окружності коліс, окружності вершин зубів і окружності западин;

- через полюс зачеплення P проводимо загальну дотичну t-t до початкових окружностей коліс і лінію зачеплення n-n, що стосується в крапках A і B основних окружностей. Частина ab лінії n-n, укладена між окружностями вершин зубів, називається активною лінією зачеплення, тобто геометричним місцем дійсного торкання профілів зубів;

- будуємо евоволенти профілів зубів, що стикаються в полюсі зачеплення P. Профілі зубів одержують обкатуючи лінію зачеплення як по однієї, так і по основним окружностям. При обкатуванні крапка P лінії зачеплення описує евоволенти f1e1 і f2e2, які є шуканими профілями. Для побудови евоволентного профілю зуба першого колеса відрізок AP ділимо на рівні частини (у нашім випадку на 4). На основній окружності першого колеса вправо й уліво від крапки A відкладаємо дуги, довжини яких дорівнюють цим відрізкам, одержуємо крапки 1', 2', 3', 4', 5', 6' і 7'. Через ці крапки проводимо дотичні до основної окружності радіуса rb1 (перпендикуляри до відповідних радіусів). На дотичній, проведеної через цю крапку 1', відкладемо 1/4 відрізка AP. На дотичній, проведеної через крапку 2 відкладемо 2/4 відрізка AP і т.д. Провівши аналогічні побудови на кожній з дотичних, одержимо ряд крапок 1'', 2'', 3'',…, 7''. Плавна крива, проведена через отримані крапки, є евольвентним профілем правої частини зуба першого колеса. Таким же способом будується евольвентний профіль зуба другого колеса (для цього використовується відрізок (BP));

профіль ніжки зуба, що лежить усередині основної окружності, окреслюється по радіальній прямій, що з'єднує початок евоволенти з початком колеса, і сполучається з окружністю западин закругленням радіуса ρ=0,4m=0,4×9=3,6 мм по початковій окружності відкладаємо половину товщини зуба

, проводимо вісь симетрії зуба (радіальну пряму) і за законами симетрії будуємо лівий профіль зуба;

- на кожному колесі праворуч і ліворуч від побудованого по крапках зуба будуємо ще два зуби (за допомогою шаблонів або лекал).

При обертанні першого колеса (допустимо в напрямку обертання годинникової стрілки) ніжка його зуба ввійде в зачеплення в крапці a з головкою зуба другого колеса. У крапці b головка зуба першого колеса вийде із зачеплення з ніжкою зуба другого колеса. Таким чином, крапка зачеплення (зіткнення зубів) переміщається по профілі зуба першого колеса від його підстави до вершини, а по профілі зуба другого – навпаки, від вершини до підстави.

Ділянки профілів зубів, які в процесі передачі обертання входять у зіткнення один з одним, називають активними профілями. Визначимо ці ділянки. Крапку f1 на профілі зуба першого колеса одержимо, якщо із центра O1 описати дугу O1a радіусом O1a. Точно також знаходимо крапку f2, описавши дугу O2b із центру O2.

У крапці a зустрінуться крапки f1 і e2, а в крапці b вийдуть із зачеплення крапки e1 і f2. Активними профілями є частини евольвент e1f1 і e2f2.

Щоб побудувати дугу зачеплення на першому зубчастому колесі, профіль цього колеса повернемо навколо крапки O1 і сполучимо послідовно з початком і кінцем активної лінії зачеплення, тобто із крапками a і b. На початковій окружності першого колеса одержимо дугу c'd'. Якщо повернемо профіль зуба другого колеса навколо крапки O2 і сполучимо із крапками a і b, то на початковій окружності другого колеса одержимо дугу c «d». Дуги c'd' і c «d» є дугами зачеплення по початкових окружностях, дуги ab' і a'b – дугами зачеплення по основних окружностях.

Довжина дуги зачеплення по основній окружності колеса дорівнює довжині

активної лінії зачеплення ab.

Кути ja1 і ja2 називаються кутами перекриття. Відношення кута перекриття зубчастого колеса до його кутового кроку t =

називається коефіцієнтом перекриття

.

Обчислимо коефіцієнт перекриття проектованої передачі. Із креслення довжина активної лінії зачеплення дорівнює 82 мм, що відповідає дійсному значенню ga= (ab) = 41 мм. Тоді коефіцієнт перекриття

Коефіцієнт перекриття можна обчислити також аналітично по формулі

Коефіцієнт перекриття показує середнє число пар зубів, що одночасно перебувають у зачепленні. Якщо ea = 1,52, то 52% часу в зачепленні беруть участь дві пари зубів, а 48% часу – одна пара.

Питоме ковзання профілів зубів (n1 і n2) є характеристикою ковзання одного профілю зуба по другому, тобто характеризує зношування профілів, викликаний появою сил тертя.

Питоме ковзання можна визначити по формулах

;

;

де r1 - радіус кривизни евоволенти першого колеса в крапці зачеплення;

r2 – радіус кривизни евоволенти другого колеса в крапці зачеплення;

u12, u21 – передатне відношення щабля.

Передатне відношення для зовнішнього зачеплення визначається як

;
.

Обчислимо питоме ковзання в декількох крапках зачеплення й побудуємо діаграми питомого ковзання. Вісь абсцис діаграм проведемо паралельно лінії зачеплення, а вісь ординат перпендикулярно до неї через крапку A. Спроектуємо на вісь абсцис крапки A, a, P, b і B. Тоді r1 = x, r2 = g2-x (g2 – довжина лінії зачеплення AB).

У нашім випадку аb = 82 мм у масштабі 2:1.

;

Значення поточної координати X візьмемо з інтервалом в 15 мм у межах від X =0 до X =108 мм. Результати обчислень n1 і n2 наведені в таблиці

Таблиця 5.1 – Результати розрахунку питомих ковзань профілів зубів

x=r1 0 15 30 45 60 75 90 105 108
ga-x=r2 108 93 78 63 48 33 18 3 0
n1 -
-7,26 -2,47 -0,87 -0,07 0,41 0,73 0,96 1
n2 1 0,88 0,71 0,46 0,06 -0,7 -3,75 -25,25 -

Тому що зачеплення профілів зубів коліс відбувається тільки на активній лінії зачеплення, то для більшої наочності ці ділянки заштриховані.

Товщину зуба першого колеса по окружності вершин визначимо по формулі

, де aa – кут профілю евоволенти на окружності вершин зубів;

inv 20°=0,014904; inv 31,24°=0,061400

Для нормальної роботи зубчастої передачі необхідно, щоб дотримувалися наступні умови:

1) ea³ 1,1;

2) Sa³ 0,3m (відсутність загострення головки зуба в меншого колеса).

У нашім випадку

й
, обоє умови задовольняються.

Таким чином, при рішенні питання щодо вибору й виготовлення зубчастої передачі в кожному окремому випадку необхідно виходити з аналізу експлуатаційних властивостей передачі – тривалості зачеплення й питомого ковзання евоволентних профілів зубів.


6. Проектування зубчастого механізму

6.1 Аналітичний метод

Передатному відношенню привласнюється знак мінус при зовнішнім зачепленні, знак плюс – при внутрішньому. Знак передатного відношення вказує напрямок обертання веденої ланки стосовно ведучого.

Планетарним називається механізм, у якому геометричні осі деяких зубчастих коліс є рухливими. Простий планетарний механізм володіє одним ступенем волі (W=1).

Існує кілька методів визначення передатних відносин планетарних механізмів.

Аналітичний метод.

U1H=U12×U23×U3H,

де

;

U3H =1– (

)=3,24

По рівнянню співвісності:

rw3´ + rw4 = rw5 – rw4