Смекни!
smekni.com

Ленточный конвейер (стр. 4 из 10)

КНβ – коэффициент, учитывающий распределение нагрузки по длине зуба; при ψbd = 1,08, твердости НВ≤350 и несимметричном расположении колес относительно опор с учетом изгиба ведомого вала передачи КНβ = 1,125;

КНv – коэффициент, учитывающий динамическую нагрузку в зацеплении; для косозубых колес при v ≤ 5 м/с КНv = 1.

Таким образом:

КН = 1,125 · 1,075 · 1 = 1,21.

Проверка контактных напряжений по формуле [3, с.34]:

,(58)

333 МПа.

Условие σН < [σH] выполнено.

Силы, действующие в зацеплении [3, с.217]:

окружная

,(59)

9108 Н;

радиальная

,(60)

где α – угол профиля зуба, α = 20º;

3095 Н;

осевая

Fa = Ft · tgβ,(61)

Fa = 9108 · tg 17º01' = 2786 Н.

Проверяем зубья на выносливость по напряжениям изгиба по формуле [3, с.38]:

≤ [σF],(62)

здесь коэффициент нагрузки КF равен [3, с.38]:

КF = К · КFv(63)

При ψbd = 1,08, твердости НВ ≤ 350 и несимметричном расположении зубчатых колес относительно опор К = 1,26, КFv = 1,1.

Таким образом, коэффициент нагрузки:

КF = 1,26 · 1,1 = 1,39

YF – коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа зубьев zv [3, с.38]:

;(64)

у шестерни

≈ 16,

у колеса

≈ 92,

таким образом YF1 = 3,80 и YF2 = 3,60.

Допускаемое напряжение определяем по формуле [3, с.39]:

,(65)

где

- предел выносливости (при отнулевом цикле), соответствующий базовому числу циклов; для стали 45 улучшенной при твердости НВ ≤ 350

= 1,8 НВ [2];

[SF] – коэффициент безопасности;

[SF] = [SF]' · [SF]";(66)

для поковок и штамповок [SF]" = 1, [SF]' = 1,75;

[SF] = 1,75 · 1 = 1,75;

для шестерни:

= 1,8 · 230 = 415 МПа,

= 1,8 · 200 = 360 МПа.

Допускаемые напряжения:

для шестерни

237 МПа,

для колеса

МПа.

Находим отношение

:

для шестерни

МПа,

для колеса

МПа.

Дальнейший расчет следует вести для зубьев колеса, для которого найденное отношение меньше.

Определяем коэффициенты Yβ и К [3, с.35]:

,(67)

,

;(68)

где n – степень точности зубчатых колес, n = 8;

εα – коэффициент торцового перекрытия, εα = 1,5;

0,92.

Проверяем прочность зубьев колеса:

≈ 198 МПа.

Условие σF2 = 198 МПа < [σF2] = 206 МПа выполнено.

2.7.3 Предварительный расчет валов редуктора

Предварительный расчет проведем на кручение по пониженным допускаемым напряжениям.

Ведущий вал:

диаметр выходного конца вала при допускаемом напряжении определяем по формуле [3, с.94]:

,(69)

≈ 29,4 мм;

принимаем dв1 = 30 мм;

принимаем под подшипники dп1 = 35 мм.

Шестерню выполним за одно целое с валом.

Рисунок 5 – Конструкция ведущего вала.

Ведомый вал:

диаметр выходного конца вала при допускаемом напряжении [τk] = 25 МПа:

≈ 63,6 мм.

Принимаем ближайшее значение из стандартного ряда : dв2 = 65 мм ; диаметр вала под подшипниками dп2 = 70 мм; под зубчатым колесом dк2 = 75 мм.

Рисунок 6 – Конструкция ведомого вала.

Диаметры остальных участков валов назначают исходя из конструктивных соображений при компоновке редуктора.

2.7.4 Конструктивные размеры шестерни и колеса

Шестерню выполняют за одно целое с валом, ее размеры определены выше: d1 =43,922 мм; dа1 =49,922 мм; b1 = 69 мм.

Колесо кованое: d2 = 276,078 мм; dа2 = 282,078 мм; b2 = 64 мм.

Диаметр ступицы dст = 1,6 · dк2 = 1,6 · 75 = 120 мм;

Длина ступицы lст = (1,5 ÷ 1,6) · dк2 = 112,5 ÷ 120 мм, принимаем lст = 115 мм.

Толщина обода δ0 = (2,5 ÷ 4) · mn = 7,5 ÷ 12 мм, принимаем δ0 = 8 мм.

Толщина диска С = 0,3 · b2 = 19,2 мм, принимаем С = 20 мм.

2.8 Проверочный расчет

2.8.1 Проверка долговечности подшипника ведущего вала

Из предварительных расчетов имеем:

Ft = 9108 Н; Fr = 3095 Н; Fа = 2786 Н; l1 = 76,5 мм; d1 = 43,922 мм.

Рисунок 7 – Расчетная схема ведущего вала.

Реакции опор:

в плоскости xz

, (70)

4554 Н;

в плоскости yz

,(71)

1947 Н;

,(72)

1148 Н.

Проверка:

Ry1 + Ry2 – Fr = 1947 + 1148 – 3095 = 0.

Суммарные реакции:

=
4953 Н,

4696 Н.

Построение эпюр моментов в плоскости 0x:

Mx1 = 0,

Mx Ал = - Ry1 · l1 = - 1947 · 76,5 = - 148,95 Н·м,

Mx Ап = - Ry2 · l1 = -1148 · 76,5 = - 87,82 Н·м,

Mx2 = 0;

в плоскости 0y:Мy1 = 0,

МyА = Rx1 · l1 = 4554 · 76,5 = 348,38 Н·м,

Мy 2 = 0;

в плоскости 0z:

Мz = M1 = 200 Н·м.

Подбираем подшипники по более нагруженной опоре 1. Намечаем радиальные шариковые подшипники 207 [3, с.335]: d = 35 мм; D = 72 мм; В = 17 мм; С = 25,5 кН; С0 = 13,7 кН.

Эквивалентная нагрузка определяется по формуле [3, с.117]:

Рэ = (X · V · PP1 + Y · Fa) · Kδ · KT,(73)

где PP1 – суммарная реакция, PP1 = 4953 Н;

Fa– осевая сила, Fa= 9108 Н;

V– коэффициент, зависящий от вращения подшипника; т.к. вращается внутреннее кольцо подшипника, то V = 1;

Kδ – коэффициент безопасности для приводов ленточных конвейеров, он равен Kδ = 1;

KT – температурный коэффициент, KT = 1 [3, с.117].

Отношение

, этой величине соответствует е ≈ 0,44 [3, с.117].

Отношение

> е; тогда X = 0,56 и Y = 1,86.

Рэ = (0,56 · 1 · 4953 + 1,86 · 3095) · 1 · 1 = 8530 Н.

Расчетная долговечность в млн.об.:

,(74)

≈ 26 млн.об.

Расчетная долговечность, ч:

,(75)

где n – частота вращения двигателя, n = 731,25 об/мин;

≈ 593 · 103 ч,

что больше установленных ГОСТ 16162 – 85.

2.8.2 Проверка долговечности подшипника ведомого вала

Ведомый вал несет такие же нагрузки, как и ведущий:

Ft = 9108 Н; Fr = 3095 Н; Fa = 2786 Н; l2 = 78,5 мм; d2 = 276,078 мм.