В связи с наличием полиморфизма титана и его способностью образовывать твёрдые растворы и химические соединения со многими элементами диаграммы состояния Титановые сплавы отличаются большим разнообразием. Однако в промышленных Титановые сплавы концентрация легирующих элементов, как правило, не выходит за пределы твёрдых растворов на основе a-Ti и b-Ti и металлидные фазы обычно не наблюдаются.
Табл. 1. — Химический состав промышленных титановых сплавов
Тип сплава | Марка сплава | Химический состав, % (остальное Ti) | ||||||
Аl | V | Mo | Mn | Cr | Si | другие элементы | ||
ВТ5 ВТ5-1 | 4,3—6,2 4,5—6,0 | — — | — — | — — | — — | — — | — 2—3 Sn | |
Псевдо- | ОТ4-0 ОТ4-1 ОТ4 ВТ20 ВТ18 | 0,2—1,4 1,0—2,5 3,5—5,0 6,0—7,5 7,2—8,2 | — — — 0,8—1,8 — | — — — 0,5—2,0 0,2—1,0 | 0,2—1,3 0,7—2,0 0,8—2,0 — — | — — — — — | — — — — 0,18—0,5 | — — — 1,5—2,5 Zr 0,5—1,5 Nb 10—12 Zr |
+ | ВТ6С ВТ6 ВТ8 ВТ9 ВТ3-1 ВТ14 ВТ16 ВТ22 | 5,0—6,5 5,5—7,0 6,0—7,3 5,8—7,0 5,5—7,0 4,5—6,3 1,6—3,0 4,0—5,7 | 3,5—4,5 4,2—6,0 — — — 0,9—1,9 4,0—5,0 4,0—5,5 | — — 2,8—3,8 2,8—3,8 2,0—3,0 2,5—3,8 4,5—5,5 4,5—5,0 | — — — — — — — — | — — — — 1,0—2,5 — — 0,5—2,0 | — — 0,20—0,40 0,20—0,36 0,15—0,40 — — — | — — — 0,8—2,5 Zr 0,2—0,7 Fe — — 0,5—1,5 Fe |
ВТ15 | 2,3—3,6 | — | 6,8—8,0 | — | 9,5—11,0 | — | 1,0 Zr |
Двухфазные a + b-сплавы — наиболее многочисленная группа промышленных Титановые сплавы. Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500—1800 Мн/м2, или 150—180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки.
Химический состав промышленных Титановые сплавы, выпускаемых приведён в табл. 1 (с разбивкой по типу структуры). По областям применения и виду полуфабрикатов можно приблизительно подразделить сплавы на следующие группы: свариваемые сплавы преимущественно для листов (ВТ5-1, ОТ4-0, ОТ4-1, ОТ4, ВТ20, ВТ6С, ВТ14, ВТ15); сплавы повышенной прочности для штамповок (ВТ5, ВТ6, ВТ14, ВТ16, ВТ22); жаропрочные сплавы для штамповок (ВТЗ-1, ВТ8, ВТ9, ВТ18). Механические свойства Титановые сплавы в отожжённом и термически упрочнённом состоянии приведены в табл. 2. Кроме обычной термической обработки, состоящей из закалки и старения, применяются различные режимы отжига, термомеханическая обработка (например, закалка из-под штампа с последующим старением), а также изотермическая деформация (медленная штамповка в штампах, нагретых до температуры деформации). В последнем случае достигаются очень однородные и высокие механические свойства. Титан и его сплавы могут подвергаться ковке, объёмной и листовой штамповке, прокатке, прессованию, волочению; из них можно получать те же полуфабрикаты, что и из др. конструкционных металлов, с учётом повышенной склонности титана к окислению при нагреве. Рекомендуется применять защитные эмалевые покрытия, которые при обработке давлением одновременно являются технологическими смазками. Термическую обработку следует проводить в печах с нейтральной атмосферой или в вакууме. Большинство промышленных Титановые сплавы имеют довольно узкий интервал кристаллизации и поэтому обладают удовлетворительными литейными свойствами. Для получения фасонных отливок предпочтительнее a-сплавы, которые, кроме хороших литейных свойств, позволяют заваривать дефекты. Наиболее употребительный литейный Титановые сплавы — сплав ВТ5Л. Для деталей повышенной прочности применяются сплавы ВТ6Л, ВТ9Л, ВТ20Л и др. В качестве материала для форм используются специальные керамические и графитовые смеси а также стальные кокили.
Табл.2. — Механические свойства титановых сплавов (типичные)
Марка сплава | Вид полуфа-бриката | Размеры (диаметр прутка или толщина листа, мм) | Режим термообра-ботки | Предел прочности, Мн/м2(0,1 кгс/ мм2) | Относи-тельное удлинение, % |
ВТ5 ВТ5-1 | Пруток Лист | 10—60 0,8—10 | Отжиг » | 750—950 750—950 | 10 15—8* |
ОТ4-0 ОТ4-1 ОТ4 ВТ20 ВТ18 | Лист » » » Пруток | 0,3—10 0,3—10 0,5—10 1,0—10 25—35 | Отжиг » » » » | 500—650 600—750 700—900 950—1150 950—1150 | 25—20 20—13 20—12 12—8 10 |
ВТ6С ВТ6 ВТ8 ВТ9 ВТ3-1 ВТ14 ВТ16 ВТ22 | Лист Пруток » » » Лист Пруток » | 1—10 10—60 10—60 10—60 10—60 0,6—10 4—16 25—60 | Отжиг Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг Закалка и старение Отжиг » | 850—1000 1050 920—1120 1100 1000—1200 750 (при 450 °C) 600 (при 500 °C) 1200 1050—1250 1200 1000—1200 750 (при 400 °C) 650 (при 450 °C) 1200 850—1070 1100—1200 830—950 1100—1250 | 12—8 8 10 6 9 6 9 6 8 6 8 6—4 16 10 |
ВТ15 | Лист | 1—4 | Закалка Закалка и старение | 850—1000 1300 | 12 4 |
Первое значение для минимальной толщины, второе — для максимальной.
В стадии промышленной разработки находятся высоколегированные сплавы Ti — Ni, представляющие собой по составу практически чистое химическое соединение никелид титана. Сплавы такого типа, получившие название «нитинол», обладают способностью при определённых условиях восстанавливать свою первоначальную форму после некоторой пластической деформации («эффект памяти»), что используется, например, в автоматическом реле противопожарных устройств и т. п.
К недостаткам Титановые сплавы следует отнести низкие антифрикционные свойства; это требует применения покрытий и смазок трущихся поверхностей.
Термореактивные пластмассы, их особенности и область применения.
Термореактивные пластмассы в вязкотекучем состоянии при нагреве не обращаются, а хрупко разрушаются. К таким пластмассам относятся текстолит, стеклотекстолит и др. Максимальная температура эксплуатации стеклотекстолита доходит до 400 °С. Термореактивные пластмассы обработке сваркой не поддаются.
Таблица 3. Свойства термопластичных пластмасс
Материал | в, МПа | , % | кДж/м2 | Максимальная температура эксплуатации (без нагрузки),°С |
Полиэтилен: | ||||
низкой плотности (<0,94 т/ м3) | 10-18 | 300-1000 | Не ломается | 60-75 |
высокой плотности (> 0,94 т/м3) | 18-32 | 100-600 | 5-20 | 70-80 |
Полипропилен | 26-38 | 700-800 | 3-45 | 100 |
Полистирол | 40-60 | 3-4 | 2 | 50-70 |
АБС (ацетобутиратстирол) | 30-55 | 15-30 | 8-40 | 75-85 |
Поливинилхлорид: | ||||
жесткий | 50-65 | 20-50 | 2-4 | 65-85 |
пластикат | 10-40 | 50-350 | Не ломается | 50-55 |
Фторопласт-4 | 20-40 | 250-500 | 16 | 250 |
Фторопласт-3 | 37 | 160-190 | 8-10 | 150 |
Органическое стекло | 80 | 5-6 | 2 | 65-90 |
Поликарбонат: | ||||
без наполнителя | 60-65 | 80- 120 | 20-30 | 135 |
с 30% волокна | 90 | 3,5 | 8 | 145 |
Капрон: | ||||
сухой | 75-85 | 50-130 | 3- 10 | 80-100 |
насыщенный водой | 35-50 | 160-250 | 45 | — |
сухой + 30 % волокна | 180 | 3 | 12 | 100-130 |
насыщенный водой + 30% волокна | 100- 125 | 4 | 18 | — |
Эпоксидный пластик | 60 | 4 | 1,8 | — |
+ 65 % стеклянной ткани (для сравнения) | 500 | ~2,5 | — | 130 |
* По ГОСТ 4647-80. |
Пластмассы с порошковым наполнителями (волокниты, асбоволокниты, стеловолокниты). Волокниты представляют собой композиции из волокнистого наполнителя в виде очесов хлопка, пропитанного фенолоформальдегидными связующими. Применяют для изготовления деталей работающих на изгиб и кручение. Асбоволокниты содержат наполнителем асбест, связующее фенолоформальдегидная смола. Из него получают кислотоупорные аппараты, ванны и трубы.
Слоистые пластмассы (гетинакс, текстолит, древеснослоистые пластики, асботесолит) являются силовыми конструкционными и поделочными материалами. Листовые наполнители придают пластику анизотропность. Материалы выпускают в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.
Термореактивные пластмассы (реактопласты) получают на основе эпоксидных, полиэфирных, полиуретановых, фенолофор-мальдегидных и кремнийорганических полимеров. Пластмассы применяют в отвержденном виде; они имеют сетчатую структуру и поэтому при нагреве не плавятся, устойчивы против старения и не взаимодействуют с топливом и смазочными материалами. Термореактивные пластмассы нерастворимы, способны лишь набухать в отдельных растворителях, водостойки и поглощают не более 0,1 0,5% Н20.