Смекни!
smekni.com

Материалы используемые в электропечестроении (стр. 2 из 6)

Огнеупоры являются массовыми материалами, поэтому значительное применение нашли лишь такие соединения, которые широко распространены на земной поверхности и могут добываться непосредственно из карьеров. Исключением являются некоторые высокоогнеупорные материалы, отличающиеся весьма ценными свойствами, но дорогие и редкие или получаемые искусственным путем.

Основой огнеупорных и высокоогнеупорных материалов являются три огнеупорных окисла – кремнезем, глинозем и окись магния – периклаз. Они распространены в природе, образуя друг с другом и другими веществами многочисленные соединения. Особенно широко используется система "кремнезем - глинозем".

2.1. Огнеупорные изделия

Наибольшие применения в электрических печах сопротивления нашла группа шамотных изделий с содержанием глинозема от 35 до 45%. Шамотными называются изделия, изготавливаемые из огнеупорных глин или каолинов, смешанных с шамотом, т.е. с предварительно обожженными в кусках теми же глинами. Это наиболее распространенный вид огнеупорного материала. Чем больше глинозема в глине, тем выше огнеупорность получаемых изделий. В электрических печах желательно применять шамотный кирпич первого сорта с содержанием не менее 38% глинозема.

Изготовлять огнеупорные изделия непосредственно из сырой глины нельзя, так как она при обжиге дает очень большую усадку и изделия растрескиваются. Поэтому глину предварительно обжигают в комках примерно 13000С и получают, таким образом, шамот. Этот шамот после дробления и помола смешивается с предварительно подсушенной глиной. Полученная смесь после увлажнения проходит глиномешалку и предварительно формуется в ленточных прессах. Затем производится допрессовка сырца в прессах давлением 2–4 МПа, а его сушка и обжиг в печи 1350 - 14000С в течении трех – пяти суток в зависимости от типа печи.

При этом способе пластичного прессования масса увлажняется до 16 – 20%. При полусухом прессовании влажность ее составляет лишь 8 – 9%, но изделия прессуют при давлении около 20 МПа.

Для изготовления фасонных изделий, а также изделий ответственного назначения количество шамота увеличивают до 80 – 85%, снижая соответственно содержание в массе глины.

Такие многошамотные изделия прессуют при давлении 30 – 50 МПа и получают изделия высокой плотности и прочности. Для многошамотных изделий усадка в обжиге не превышает 0,5 – 1,0%, что обеспечивает сохранение их формы и точность размеров деталей.

Шамотные кирпичи имеют светло-желтый цвет, равномерный зернистый излом; масса стандартного кирпича 3,2 – 3,3кг. По ГОСТ 390 – 69 шамотные изделия по своей огнеупорности делятся на три класса: класс А имеет огнеупорность не ниже 17300С; класс Б – не ниже 16700С; класс В – не ниже 16100С. Однако рабочая температура шамота намного ниже, так как он теряет свою механическую прочность уже при 1300 - 14000С; предельные рабочие температуры шамота 1350 - 14500С.

Шамот имеет сравнительно малый коэффициент расширения и хорошо выдерживает резкие колебания температуры. В зависимости от способа изготовления стойкость изделий к термоударам составляет:

Пластичное прессование……………8 – 15 водяных теплосмен

Полусухое прессование……………. .15 – 25. То же

Пневматическое трамбование………25 – 30

Многошамотные…………………….50 – 100

Шамотные изделия имеют низкую электропроводность, что позволяет использовать шамот в электрических печах одновременно и как огнеупорный, и как электроизоляционный материал.

Шамот является наиболее распространенным огнеупорным материалом, он широко применяется в электропечестроении, особенно в строительстве печей сопротивления. Так как эти печи работают в основном при температурах не выше 13000С, то огнеупорный и механические свойства шамота вполне удовлетворяют предъявляемым этими печами требованиям. Наоборот, для дуговых и индукционных печей шамот во многих случаях оказывается недостаточно огнеупорным и его применение ограничивается менее ответственными или наружными частями футеровки.

Шамотно - каолиновые изделия изготавливаются из каолиновых глин, имеющих повышенное содержание глинозема, причем их подвергают более высокому обжигу. Благодаря этому они имеют несколько большую огнеупорность и увеличенную температуру деформации под нагрузкой. В таблице 2 дается сравнительная характеристика шамотных шамотно – каолиновых изделий.

С увеличением содержания глинозема огнеупорность изделий повышается, поэтому весьма заманчивым является использование минералов с высоким содержанием глинозема. Такими минералами являются силлиманиты или аналогичные им минералы кианиты андалузиты. При обжиге при температуре свыше 15500С в этих минералах образуются муллит и свободная кремнекислота, образующая вместе с плавнями стекловидную фазу. Муллит содержит уже 72% глинозема и 28% кремнезема и его огнеупорность равна 18700С, однако присутствие стекловидной фазы в муллитовых изделиях снижает их огнеупорность.

Таблица 2. Сравнительные характеристики шамотных и шамотно–каолиновых изделий.

Изделия Содержание Al2O3,% Температура обжига, 0С Огнеупорность,0С Температура деформации, 0С
НР 40%
Шамотно–глиняные 38 – 40 1350 – 1420 1710 – 1650 1400 1600
Шамотно-каолиновые 40 – 44 1450 – 1500 1770 – 1750 1500 1650

Добытые материалы после предварительного обжига и помола смешиваются со связующими веществами, формуются, подвергаются сушке и обжигаются при температуре не ниже 15500С. В результате получаются силлиманитовые изделия, отличающиеся хорошими огнеупорностью и механической прочностью при высоких температурах.

Еще более высококачественные изделия изготавливают из плавленого муллита, получаемого расплавлением боксита в присутствии кокса древесных опилок в электрической дуговой печи. Полученный материал после размельчения смешивается с глиной, формуется и обжигается при 1500 - 17000С.

Плавильный муллит обладает малым коэффициентом расширения, поэтому выполненные из него изделия являются весьма термостойкими и не растрескиваются при резких изменениях температуры; их огнеупорность 1800 - 18500С, начало деформации под нагрузкой 196,2 кПа у лучших сортов достигает 17000С.

Плавленый муллит применяется главным образом для изготовления мелких изделий, а также в качестве формовочного материала для индукционных плавильных печей.

Кроме того, он также применяется в стеклоплавильных печах. Для этой цели полученный в электролитической печи муллит отливается в формы и после длительного весьма медленного охлаждения в виде плавленых муллитных брусьев идет на выкладку ванн стеклоплавильных печей. Такой литой муллит имеет среднюю плотность 3300кг/м3, предел прочности на сжатие 300 – 500 МПа, температура начала размягчения под нагрузкой 196,2 кПа 1700С.

Из гидратов глинозема также могут быть получены высокоогнеупорные высокоглиноземистые изделия. Природные гидраты глинозема – диаспоры и бокситы – сильно загрязнены минеральными примесями. Поэтому хотя на базе обогащенного акташского диаспора можно получать изделия с содержанием глинозема до 68%, их свойства приближаются к свойствам силлиманитовых изделий.

Искусственный гидрат глинозема, получаемый путем химической переработки бокситов и прокаленный при 1000 - 12000С, превращается в технический глинозем, содержащий до 99,0 – 99,5% глинозема. Из технического глинозема спеканием его с глиной может быть получен муллито–корундовый шамот, а последний по способу изготовления много шамотных изделий позволяет получить корундовые изделия с содержанием глинозема около 73%, со средней плотностью 2700кг/м3, огнеупорностью свыше 18000С и с температурой начала деформации под нагрузкой 196,2 кПа в 15800С.

Из технического глинозема могут быть получены и чистые корундовые рекристаллизованные изделия. Для этой цели производиться дополнительный обжиг глинозема при температуре 1450 - 16000С, его размельчение и формирование из него изделий с последующим вторичным обжигом при 17000С. Полученные рекристаллизованные изделия содержат до 99,0 – 99,7% глинозема, обладают огнеупорностью выше 20000С и температурой начала деформации под нагрузкой 196,2 кПа в 19000С. Однако большая усадка их и сравнительно невысокая нагревостойкость позволяют изготовлять таким путем лишь тонкостенные, полые и небольшого размера изделия. Поэтому из того же глинозема, а также из белого электрокорунда или монокорунда со связкой из высокодисперсного рекристаллизованного корунда получают более совершенные по своим свойствам корундовые изделия также с огнеупорностью около 20000С и с температурой начала деформации под нагрузкой 196,2 кПа в 18500С.

На противоположном конце системы SiO2-А12О3 находится динас, материал, имеющий явно выраженный кислый характер. Поэтому динас применяется главным образом для выкладки футеровки дуговых и индукционных сталеплавильных печей, работающих с использованием кислых - шлаков. Замечательным свойством динаса является его механическая прочность при высоких температурах. В то время как остальные материалы снижают постепенно свою прочность по мере повышения температуры, динас сохраняет свои механические свойства почти до температуры расплавления. Ввиду этого он является одним из самых прочных огнеупорных материалов и поэтому идёт на выкладку нагруженных частей футеровки, сводов и арок дуговых сталеплавильных и руднотермических печей.

Основным сырьем для изготовления динаса являются кварциты. Динасовый кирпич имеет белый или слегка желтоватый цвет, в изломе, видны зерна кварца. Масса стандартного кирпича 3,2-3,3 кг. В соответствии с ГОСТ 4157-69 и 156Б-71 - динасовые изделия могут быть отнесены к –I, II или особому классу или к электродинасам (изделия для электросталеплавильных печей)