Так как N1>NFO и N2>NFO, то коэффициент долговечности KFL = 1.
По таблице 3.1 допускаемые напряжения изгиба, соответствующие числу циклов перемены напряжения:
Шестерня:
Н/мм2.Колесо:
Н/мм2.Допускаемые напряжения изгиба определяем по формуле:
Шестерня:
Н/мм2.Колесо:
Н/мм2.дальнейший расчет будем вести по менее прочным зубьям, то есть по колесу.
[σ]F = 469 Н/мм2.
Выбор материалов колес для червячной передачи.
Червяки изготавливают из тех же сталей что и шестерни зубчатых передач. Материал червяка назначают по таблице 3.1, 3.2 [1], а термообработку принимают в зависимости от мощности на валу. При Р = 11 кВт > 1 кВт, с целью повышения КПД принимаем;
Червяк - Сталь 12ХН3А 50…55 HBС, термообработка цементация, Dпред = 125 мм. Средняя твердость
, НВ = 505.Выбор марки материала червячного колеса зависит от скорости скольжения. Скорость скольжения определяется по формуле:
, м/с.В соответствии со скоростью скольжения из группы 1 принимаем материал колеса;
Колесо – БрО10Н1Ф1 (центробежное литье), σв = 285 Н/мм2, σт = 165 Н/мм2.
Определяем допускаемые контактные напряжения изгиба.
Допускаемые напряжения определяют по табл. 3.6. так как группа материалов 1, а твердость червяка > 45 HRC, то определяем по формуле;
,где Сυ = 0,94, коэффициент, учитывающий износ колес,
КHL – коэффициент долговечности,
,где N – число циклов нагружения зубьев червячного колеса;
циклов. . Н/мм2.KFL - коэффициент долговечности,
,где N – число циклов нагружения,
циклов,Так как
то . .При нереверсивной передаче
Н/мм2.4. Расчет зубчатых передач
4.1 Расчёт закрытой цилиндрической прямозубой зубчатой передачи
u = 4 - передаточное отношение пары.
Принимаем ближайшее по ГОСТ 2185-66 аw = 180 мм.
Определим модуль зацепления m, мм:
,где Кm=6,8 – вспомогательный коэффициент;
d2 – делительный диаметр колеса,
b2 – ширина венца колеса,
мм;Примем b2=44 мм.
[σ]F =469 Н/мм2 – допускаемое напряжение изгиба материала колеса с менее прочным зубом;
.Принимаем по ГОСТ2185-66 m = 4 мм.
Определим суммарное число зубьев шестерни и колеса:
;Примем ZS =90 зубьев.
Определим число зубьев шестерни:
;Примем Z1 =18 зуба.
Тогда
Z2 = ZS - Z1 = 90 - 18 =72.
Фактическое значение передаточного числа
Uф = Z2/Z1 = 72/18 =4
DU=
= = 0 %,что меньше допускаемых 4%.
Определим фактическое межосевое расстояние:
мм.Определяем основные геометрические параметры шестерни и колеса. Полученные значения сведём в таблицу 4.1.
Таблица 4.1
Параметр | Формула | Шестерня | Колесо | |
мм | ||||
Диаметр | делительный | d = mZ | 72 | 288 |
Вершин зубьев | dа = d+2m | 80 | 296 | |
Впадин зубьев | df = d-2,4m | 62,4 | 278,4 | |
Ширина венца | b2 = Yа´а b1 = b2 + 4 | 48 | 44 |
Проверочный расчет
Проверим межосевое расстояние:
мм.Проверка зубьев по контактным напряжениям:
sН =
< [s]Н,где КН = КНb´ КНa´ КНn- коэффициент нагрузки.
По таблице 4.2 при
м/с и 9 степени точности КНa =1– коэффициент учитывающий распределенные нагрузки.По таблице 4.3. для косозубых колёс при и 9 степени точности имеем КНv= 1,051;
К – вспомогательный коэффициент, К=436;
Ft – окружная сила в зацеплении,
Н;Средние крутящий момент на колесе,
.sН =
Н/мм2.sН= 1011 МПа < [s]Н =1127 Н/мм2
в передаче имеется недогрузка которая не должна превышать 10 %;
,условие выполняется.
Проверка зубьев на выносливость по напряжениям изгиба:
.где Ft – окружная сила в зацепление, Н;
КFα =1 – коэффициент, учитывающий распределенные нагрузки;
КFβ =1 – коэффициент неравномерности нагрузки;
КFυ =1,13 – коэффициент динамической нагрузки;
Yβ =
- коэффициент, учитывающий наклон зубьев;YF1 и YF2 – коэффициент формы зуба шестерни и колеса:
YF1= 4,2 при
,YF2=3,61 при
. Н/мм2, Н/мм2.условие выполняется.
5. Нагрузки валов редуктора
5.1 Определим силы в зацеплении закрытых передач
Червячная передача
Окружная
Н. Н,Радиальная
Н.Осевая
Н. Н.В проектируемом приводе цилиндрические пары с углом наклона зуба β=00, угол зацепления принят α=200.
Цилиндрическая передача.
Окружная
Н, Н.Радиальная
Н.5.2 определение консольных сил
В проектируемом приводе учитывается нагрузка вызываемая муфтами соединяющая редуктор с кормоприготовительным комбайном и двигатель с редуктором.