1.4 Продукты доменного производства
Основным продуктом доменного производства является чугун. В чугуне углерод может содержаться в виде механической примеси (свободного графита) и химического соединения — карбида железа (Fе3С), называемого цементитом.
Чугуны, содержащие свободный графит, имеют в изломе серый цвет и крупнозернистое строение. Эти чугуны применяются для получения отливок, так как хорошо заполняют литейные формы и достаточно легко поддаются обработке режущим инструментом. Такой чугун называют серым или литейным чугуном. Характерным для него является повышенное содержание кремния и пониженное — серы.
Чугуны, содержащие углерод в виде химического соединения с железом (Fе3С), имеют белый излом. Для отливок они малопригодны и трудно обрабатываются режущим инструментом. Эти чугуны преимущественно перерабатываются на сталь, они имеют пониженное содержание кремния и называются белыми или предельными чугунами.
Кроме литейных и предельных чугунов в доменных печах получают специальные чугуны, или ферросплавы. Ферросплавы имеют повышенное (более 10%) содержание некоторых элементов, например кремния, марганца. Применяются ферросплавы в качестве специальных присадок при выплавке стали.
Кроме чугуна в доменном производстве получают доменный газ и шлак.
Доменный газ и шлак представляют собой побочные продукты плавки.
Доменный газ используется в качестве топлива. Он улавливается в области колошника и подвергается очистке. Около 25% доменного газа используется непосредственно в доменном процессе, остальные 75% идут для сжигания на ТЭЦ. Шлак идет для производства строительных материалов
2. Металлургия стали
Значительную часть стали получают из предельного чугуна. Сущность процесса заключается в уменьшении в чугуне содержания углерода и примесей (серы, фосфора, кремния и марганца) путем их окисления. Кроме чугуна в состав шихты могут входить металлический лом, железная руда, флюсы. Сталь выплавляют в кислородных конверторах, мартеновских и электрических печах.
2.1 Выплавка стали в кислородных конвертерах
Сущность процесса заключается в том, что через расплавленный чугун и небольшое количество металлического лома черных металлов, загруженных в конвертор, продувается кислород, образуется оксид железа FO, который, взаимодействуя с углеродом и примесями чугуна, окисляет и обращает их в газ и шлак. Реакции окисления идут с выделением тепла. Чугун при этом превращается в сталь. Конвертер с кислородным дутьем (рис. 2) состоит из стального корпуса, футерованного огнеупорным кирпичом. Конвертер имеет поворотное устройство, с помощью которого может устанавливаться в наклонном положении. В таком положении его заливают жидким чугуном, затем устанавливают вертикально и через фурму производят продувку кислородом. По окончании процесса конвертер вновь наклоняют и выпускают сталь и шлак.
Рис.2. Выплавка стали в кислородных конвертерах
Емкость современных конвертеров составляет 300-350т, Продолжительность плавки 30-40 минут. Температура, развиваемая в плавильном пространстве, достигает 1800 °С. Высокая производительность агрегата, простота конструкции и обслуживания, отсутствие потребности в топливе обеспечивают невысокую себестоимость конверторной стали,
К недостаткам работы конверторов относятся невозможность переработки значительного количества металлического лома, значительный угар металла (5—10%), повышенное содержание вредных примесей в получаемой стали.
Конвертерная сталь относится к стали обыкновенного качества. Такая сталь идет для получения проката различного профиля — листов, прутков, трубного проката, уголков и т. д. Кислородное конвертирование — перспективный процесс, поскольку с его помощью в последние годы освоено получение качественной стали.
2.2 Выплавка стали в мартеновских печах
Процесс выплавки разработан французскими металлургами Э. и П. Мартенами. Он отличается более высокой по сравнению с конвертированием температурой, развиваемой в плавильном пространстве печи, — 1800—1900°С, что позволяет перерабатывать чугун в твердом, жидком состоянии, стальные отходы металлургического и машиностроительного производства. В состав шихты могут входить железная руда, флюсы, марганец. В качестве топлива в мартеновском процессе используется природный газ.
Мартеновская печь (рис. 3) работает следующим образом.
Шихта через загрузочные окна 1 загружается в плавильное пространство 2, выложенное огнеупорным кирпичом. Природный газ и воздух, образующие факел для расплавления
Рис. 3. Мартеновская печь
Готовая сталь выпускается через отверстие — летку, расположенную в задней стенке печи. Различают два варианта мартеновского процесса: скрап-процесс и скрап-рудный процесс.
При скрап-процессе шихта на 60—80% состоит из стального лома и на 20-40% — из чушкового чугуна. Такой процесс используется на металлургических заводах, где нет доменных печей. Скрап-процесс позволяет вводить в состав стали легирующие добавки (марганец, хром, ванадий и др.), улучшающие качество стали.
При скрап-рудном процессе шихта состоит на 60—75% из жидкого чугуна, небольшого количества железной руды и металлического лома. Этот процесс используется на металлургических заводах, имеющих доменные печи. Скрап-рудный процесс — наиболее распространенный процесс плавки.
Емкость мартеновских печей достигает 900 т. Время плавки составляет 3—6 часов. Достоинством мартеновского способа является возможность широкого использования в составе шихты металлического лома и получения качественной стали. Основными недостатками мартеновского процесса следует считать значительную продолжительность плавки и большой расход топлива.
2.3 Выплавка стали в электрических печах
Электросталеплавильный процесс, появившийся в конце XIX в., благодаря поддержанию в плавильном пространстве повышенной температуры (порядка 2000 °С и выше),обеспечивает получение стали более высокого качества по сравнению с конверторным и мартеновским процессами. Высокая температура дает возможность полнее удалять примеси, вводить в состав стали тугоплавкие легирующие металлы, значительно повышающие ее прочность, твердость и коррозийную стойкость.
Электрические плавильные печи разделяются на дуговые и индукционные.
Дуговая электрическая печь (рис, 4) состоит из стального кожуха, футерованного огнеупорным кирпичом. Сверху через отверстия в своде печи введены угольные электроды, Шихта загружается через загрузочное окно 1. Шихта плавится под воздействием высокой температуры, создаваемой электрической дугой, возникающей при прохождении электрического тока между электродами 2 и шихтой 3. Готовую сталь выпускают по желобу летки 4 при наклоне печи, осуществляемом с помощью поворотного механизма 5.
Рис. 4. Дуговая электрическая печь
Рис. 5 Индукционная электрическая печь
Емкость дуговых печей колеблется от 0,5 до 400 т, длительность плавки составляет 3-6 часов,
В индукционной печи (рис, 5) плавка осуществляется в тигле из огнеупорного материала 1. Вокруг тигля располагается спиральный индуктор 2, изготовленный из медной трубки, в которой циркулирует охлаждающая вода.
При прохождении тока через индуктор в шихте 4 наводятся мощные вихревые токи, которые обеспечивают плавление шихты. Шихтовые материалы загружаются сверху. Для выпуска готовой стали тигель наклоняют в сторону сливного желоба 3,
В индукционных печах выплавляют особо высококачественные стали. Вместимость печей составляет от десятков килограммов до 2—5 т металла. Продолжительность одной плавки составляет от 0,5 до 2,5 часов.
Электрометаллургический процесс - основной способ производства высококачественных и особо высококачественных и особо высококачественных сталей. Вместе с тем, себестоимость электростали значительно выше конверторной и мартеновской стали. Недостатком электрических печей является относительно малая вместимость, сложность и высокая стоимость электрооборудования, низкая стойкость электродов и тиглей, необходимость использования чистых шихтовых материалов.
2.4 Разливка стали
Изложницы для разливки (сверху)
Разливка сифоном (снизу)
2.5 Непрерывная разливка
Разливка стали имеет очень важное значение в металлургии и позволяет придать полученной стали первичную форму – форму слитка.
Применяют 2 способа разливки: разливка в изложницы и непрерывная разливка стали (рис. 6)
Разливка в изложницы подразделяется на разливку сверху и сифонную разливку.
Разливка сверху используется для получения крупных слитков (десятки тонн). Преимуществом разливки является простое разливочное оборудование, а недостатками — малая производительность и повышенные потери материала за счет усадочной раковины, образующейся в слитке при затвердевании стали.
Сифонный способ разливки (разливка снизу) позволяет получать небольшие слитки (тонны). Производительность процесса выше разливки сверху, поскольку заполняется одновременно несколько изложниц, потери материала меньше. Недостаток способа — сложное разливочное оборудование.