Непрерывная разливка стали— наиболее производительный и экономичный способ разливки. Из ковша 1 через разливочное устройство расплавленная сталь поступает в охлаждаемый водой кристаллизатор 2, В кристаллизаторе сталь затвердевает и в виде слитка 3 непрерывно вытягивается вращающимися роликами 4. Нужной длины слитки отрезаются ацетилено-кислородной горелкой 5.
Преимуществом непрерывной разливки является высокая производительность процесса, возможность получения необходимой формы сочетания слитки, что позволяет направить их непосредственно на обработку резанием и прокатку. При непрерывной разливке до пяти раз сокращаются отходы материалы по сравнению с разливкой в изложницы.
Недостатком способа является сложность разливочного оборудования. Однако применение непрерывной разливки стали в мире быстро увеличивается. Перспективной является организация единого технологического процесса: непрерывная разливка — прокатка стали.
2.6 Прогрессивные способы получения стали
Бездоменная металлургия. Прогрессивным способом является получение стали прямым восстановлением из руд, минуя доменный процесс. Железистый концентрат поступает по пульпопроводу прямо на завод, где в автоматических шахтных печах при температуре 1000 °С получают металлизированные окатыши. Окатыши в качестве шихты поступают в электропечи. Полученный материал после непрерывной разливки сразу идет на прокатку.
Способ весьма экономичен. Отпадают затраты на коксохимическое производство, качество полученной стали высокое, поскольку в рудах Курской магнитной аномалии практически отсутствуют фосфор и сера. Производительность бездоменного процесса заметно выше традиционных способов выплавки стали.
Электрошлаковый переплав (ЭШП). Данным способом получают особо высококачественные легированные стали. Для этого сталь обыкновенного качества подается в установку ЭШП в виде прутков-электродов. Вследствие сопротивления электрода проходящему току выделяется большое количество теплоты, отчего электрод плавится. Расплавленный металл электрода проходит через слой специального жидкого шлака и очищается от вредных примесей и газов. Аналогичный способ — плазменно-дуговой переплав (ПДП). Источником тепла здесь служит плазменная дуга с температурой до 10000 "С. Используется также электронно-лучевой переплав (ЭЛП). Плавление происходит под действием потока электронов, излучаемых высоковольтной кобальтовой пушкой с созданием в плавильном пространстве глубокого вакуума.
Достоинствами перечисленных способов является возможность получения стали и сплавов очень высокой чистоты, применение которых облегчает массу конструкций, увеличивает надежность и долговечность машин и механизмов. Такая сталь необходима для атомной, реактивной и космической техники.
3. Металлургия цветных металлов
Широкое применение цветных металлов объясняется их специфическими свойствами: высокими электро- и теплопроводностью, коррозийной стойкостью, жаропрочностью. Кроме того, цветные металлы способны образовывать сплавы друг с другом и с черными металлами.
Цветные металлы классифицируют на четыре группы:
тяжелые — медь, никель, свинец, цинк, олово;
легкие — алюминий, магний, титан, кальций и др.;
благородные — золото, серебро, платина;
редкие — молибден, вольфрам, ванадий, уран и др.
3.1 Производство меди
Медь имеет красный цвет, температура ее плавления 1083 °С, плотность 8,96 т/м3. Медь хорошо проводит электричество и Тепло, отличается малой прочностью, высокой пластичностью. Медь используется в электро- и радиопромышленности, значительная часть ее идет на получение сплавов.
Около 80% меди выплавляют из сульфидных руд. Основными медными рудами являются медный колчедан (СuFеS2) и медный блеск (Сu2S).
Медные руды относительно бедны (содержание меди — не более 5%), поэтому их подвергают обогащению. С этой целью используют метод флотации, основанный на способности тонко измельченных рудных минералов смачиваться некоторыми реагентами. Смесь измельченной руды, воды и реагентов помещается в специальной ванне, через которую пропускается воздух. Благодаря пузырькам воздуха на поверхность ванны поднимаются частицы рудных минералов, а пустая порода осаждается и удаляется. Содержание меди в полученном концентрате достигает до 30%.
Медный концентрат после обогащения содержит сернистые соединения. Для снижения содержания серы концентрат подвергают обжигу, который ведут в специальных печах при температуре 700—800 °С.
В результате обжига получают так называемый огарок и сернистый газ SО2. Огарок направляется на плавку. Сернистый газ используется для получения серной кислоты.
Плавка огарка производится в отражательных печах, по устройству сходных с мартеновскими. В них одновременно может плавиться более 100 т огарка.
В конце плавки в печи образуется полупродукт — штейн (Си2S4FеS), содержащий до 50% меди, а также железо, серу, кислород и включающий небольшое количество золота, серебра, свинца и других металлов. Штейн сливают и направляют в конверторы для получения черновой меди.
Конвертор представляет собой футерованный изнутри 'металлический сосуд, установленный на опорных роликах и поворачивающийся вокруг горизонтальной оси (рис. 7). Масса плавки составляет до 1000 т. Воздушное дутье подается через фурмы, расположенные вдоль конверторов. 'Затем в конвертор подается кварцевый флюс. Продувка длится до 30 часов. В результате получают черновую медь.
Рис. 7. Кислородный конвертор:
1.Дутьё
2.Газы
3.Штейн и шлак
Черновая медь содержит примеси железа, серы, мышьяка, кислорода.
Примеси ухудшают свойства меди, поэтому черновую медь подвергают рафинированию. Рафинирование меди производится огневым и электролитическим способами. Огневое рафинирование осуществляется в пламенных печах и производится в том случае, когда пренебрегают небольшим количеством благородных металлов, содержащихся в черновой меди. Окисление примесей в печи происходит за счет кислорода воздуха, который подается в жидкий металл. Готовую медь разливают на слитки или анодные пластины.
Для получения высококачественной меди и выделения из нее благородных металлов производят электролитическое рафинирование. Для этого черновую медь в виде пластин (анодов) погружают в ванну с водным раствором медного купороса в серной кислоте. Параллельно анодам подвешивают тонкие листы чистой меди (катоды). При прохождении постоянного тока аноды растворяются в воде и медь осаждается на катодах. За 10—12 суток на катодной пластине отлагается около 100 кг меди. Катоды затем переплавляют и разливают в слитки.
В зависимости от степени чистоты различают ряд марок меди (МОО, МО, М1, М2, МЗ, М4) с содержанием меди от 99,0 до 99,95%.
3.2 Производство алюминия
Алюминий — металл серебристо-белого цвета, температура его плавления 660 °С, плотность 2,7 т/м3. Алюминий обладает высокой электро- и теплопроводностью, уступая по этим свойствам серебру и меди, пластичностью и малой окисляемостью. Прочность и твердость алюминия невысокие.
Наибольшее применение алюминий получил в электротехнической промышленности для изготовления проводов и кабелей. Сплавы алюминия широко применяются в авиации, машиностроении, пищевой промышленности.
Получают алюминий из руд с высоким содержанием глинозема: бокситов, нефелинов, алунитов и коалинов. Основным сырьем для получения алюминия являются бокситы (50—60% глинозема).
Процесс получения алюминия состоит из двух стадий: получение глинозема (А1203) из руды и производство алюминия из глинозема. В зависимости от состава и свойств исходного сырья применяют различные способы получения глинозема. Наиболее эффективным из них является щелочной способ. Выход глинозема из руды при этом способе составляет около 87%.
Глинозем представляет собой прочное химическое соединение, температура его плавления — 2050 °С. В этих условиях восстановление алюминия из глинозема весьма затруднительно. Поэтому алюминий получают электролизом из глинозема, растворенного в расплавленном криолите (ЗNаFuА1F3). Процесс проходит в электролизных ваннах (электролизерах). Ванна (рис. 8) представляет собой металлический корпус, футерованный углеродистыми блоками. В них вставляются медные катодные шины. Сверху в ванну опускается угольный электрод, представляющий собой анод.
Рис. 8. Электролизер
В результате электролиза на дне ванны собирается жидкий алюминий, который периодически откачивается с помощью вакуумного насоса.
Для увеличения степени чистоты алюминия его рафинируют. С этой целью алюминий в ковшах при температуре 650—770°С подвергают продувке хлором в течении 10—15 минут. Из алюминия удаляются примеси глинозема, криолита и газы. Готовый алюминий разливают в изложницы.
Алюминий высокой чистоты получают электролитическим рафинированием. Анодом в этом случае служит подлежащий очистке алюминий, катодом — пластины из чистого алюминия. Расплавы хлористых и фтористых солей используются в качестве электролита.
3.3 Сплавы цветных металлов
Сплавы меди нашли в технике широкое применение в качестве конструкционных материалов.
Бронзы — сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием. Эти сплавы более прочны и коррозионностойки, чем медь. Устойчивость к износу делает их незаменимыми для изготовления вклады шей подшипников, червячных колес, шестерен и других деталей машин и приборов.