Смекни!
smekni.com

Метод А.Ф. Смирнова для определения критических нагрузок в стержневых системах (стр. 2 из 3)

minPкр=

3.ФОРМИРОВАНИЕ МАТРИЦЫ ПОДАТЛИВОСТИ ДЛЯ СТЕРЖНЕВЫХ СИСТЕМ ПРИ РАСЧЕТЕ НА УСТОЙЧИВОСТЬ

Матрица податливости всей системы формируется из матриц податливости отдельных участков и имеет следующую структуру

0

G= Gk

(μ×μ) Gk-матрица податливости участка k

Вид матрицы Gk зависит от типа участка (какую деформацию он испытывает).

1)Участок ,испытывающий только изгиб

G

,

где : l0-длина любого участка ,принятого за основной

B0-жесткость любого участка ,принятого за основную

;

2)Участки ,испытывающие деформацию сжатие с изгибом. Для такого участка вид матрицы Gk зависит от того ,на сколько панелей разбита его длина

а)Длина участка разбита на две панели:

-длина участка

-длина панели

;

б)Длина участка разбита на три панели:

;
;

в)Длина участка разбита на четыре и более панелей:

В этом случае общая длина сжато-изогнутого элемента компонуется из подучастков с двумя или тремя панелями. Соответственно и компонуется матрица податливости.

GΙ

Gk=GΙΙ

4.ФОРМИРОВАНИЕ МАТРИЦЫ H

Матрица H-числовая матрица размером (μ×m), преобразующая вектор перемещений

в эпюру моментов грузового состояния.

;

Для построения матрицы H необходимо определить изгибающие моменты во всех расчетных сечениях основной системы от узловых нагрузок и построить эпюру М0

Эпюра М0 строится со стороны растянутых волокон с учетом деформированного состояния системы.


М0=

В матрицу H вписываются коэффициенты при перемещениях из каждого уравнения.

5.РЕШЕНИЕ ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ

Существует несколько методов решения характеристического уравнения . Все методы делятся на две группы:

1)Первая –позволяет вычислить все собственные числа( метод Крылова-Лузина и др.)

2)Вторая –позволяет вычислить наибольшее собственное число(и соответственно наименьшее значение критической нагрузки)

К этой группе относится метод последовательных приближений

Метод итераций позволяет вычислить наибольшее собственное число характеристической матрицы

.Вместе с определением собственного числа одновременно производится определение собственного вектора, соответствующего этому числу и удовлетворяющего равенству:

,

где

-характеристическая матрица

-для статически неопределимых систем

=Е- для статически определимых

- собственное число характеристической матрицы

-собственный вектор матрицы

Порядок решения:

1)Задаемся приближенным вектором перемещений

-первое приближение;

2)Вычисляется:

,

где

-второе приближение собственного вектора;
-первое приближение собственного числа.

Вектор

следует сделать нормированным ,т.е. его наибольшую координату надо вынести за знак матрицы в виде множителя
.

3)Далее вновь подсчитывается :

и т.д.

4)Повторение процесса продолжается до тех пор ,пока значения координат векторов двух последних приближений не совпадут.

Величина

найденная в последнем приближении принимается за искомое

6.ПРИМЕР.

Определить критическую силу методом А.Ф.Смирнова

;
=Е- т.к. система статически определима

=
;
;

;

;

;