Расстояние между листами в садке при заданной неравномерности процесса нагрева можно определить следующим образом. По формуле (27) определяется время нагрева ближнего конца садки. К его величине добавляется допустимая разница во времени нагрева дальнего и ближнего концов садки и определяется время нагрева дальнего конца. Это позволяет рассчитать величину критерия Kτ , рассчитывается также критерий Kt. По критериям Kτи Ktи номограмме рис. 6 определяют значение критерия Кх , на основании которого вычисляют расстояние между листами
(42)Приведенная методика расчета продолжительности нагрева длинномерных изделий справедлива лишь при условии, если температура воздушного потока на входе в рабочую камеру печи в процессе нагрева
изделий остается постоянной. Однако при недостаточной величине установленной мощности печи, а именно:
(43)
Если температура воздушного потока на входе в рабочую камеру печи в первый период нагрева изделий уменьшается по сравнению с заданной (t1вх). Это приводит к увеличению продолжительности нагрева длинномерных изделий. В данном случае время нагрева дальнего конца садки равно
(44)где величина Kτ определяется по номограмме рис. 6, ∆K - по номограмме рис. 8. Продолжительность нагрева ближнего конца садки определяется формулой, аналогичной формуле (35):
(45)4. Расчет нагрева «тонких» изделий в методических печах
Электрические печи с преобладанием излучения.
Методические печи в большинстве случаев по длине делятся на несколько отдельно регулируемых тепловых зон. Нагревательные элементы в пределах одной зоны обычно размещаются равномерно. Поэтому каждая зона характеризуется постоянным тепловым потоком, передаваемым лучеиспусканием на тепловоспринимающую поверхность изделий. Температура зоны печи по мере нагрева изделий повышается в соответствии с основным уравнением теплообмена излучением:
(46)где qл- интенсивность теплового потока (излучением),
Т1- температура в данной зоне печи, К;
Т2- температура изделий, °К;
εп - приведенная степень черноты изделий и внутренней поверхности печи.
Интенсивность теплового потока qлсвязана с полезной мощностью зоны:
(47)
где N'п - полезная мощность зоны печи, кВт;
F' - тепловоспринимающая поверхность изделий в зоне, м2.
Итак, температура зоны определяется следующим выражением:
(48)
При этих условиях уравнение теплового баланса аналогично уравнению (31)
(49)где G’- масса загрузки изделий в одной зоне, кг.
Интегрируя уравнение (49) в пределах от начальной температуры изделий
до конечной в данной зоне, получим следующую формулу, определяющую продолжительность нагрева изделий в зоне:(50)
Масса загрузки изделий в зоне равна
(51)
где g’ - нагрузка на метр пода печи, кг/м;
V- длина зоны, м.
Для первой зоны печи
= , для последней зоны = . Если известно время нагрева, то можно определить скорость движения изделий в печи, т.е(52)
где
- скорость движения изделий в печи, м/сек.В большинстве случаев скорость движения изделий во всех зонах печи должна быть одинаковой, поэтому время нагрева изделий в каждой зоне ограничивается ее длиной. В этом случае необходимо рассчитывать температуру нагрева изделий в каждой зоне на основании выражения (50):
(53)
Нагрузка на погонный метр пода g' и скорость движения изделий в печи νвыбираются из следующего соотношения:
(54)
где Nп- полезная мощность печи, кВт. Произведение
равно производительности печиР = 3600
(55)где Р - производительность печи, кг/ч.
Печи с конвективным теплообменом.
В методических топливных печах и в электрических печах с искусственной циркуляцией воздуха нагрев изделий происходит как за счет теплообмена излучением, так и конвективного теплообмена. Особенно велика роль конвективного теплообмена в низкотемпературных конвекционных печах. Процесс нагрева изделий в методических конвекционных печах зависит от схемы движения газов (воздуха) и нагреваемых изделий в рабочей камере печи. Существуют три основные схемы движения газов