Jр
Рис 3.5. Схема .измерения световых потоков в турбодиметрии и нефелометрии
Турбидиметрия основана на измерении интенсивности светового потока, прошедшего через дисперсную систему — J.
Нефелометрия основана на измерении интенсивности светового потока, рассеянного дисперсной системой — Jр.
Турбидиметрия и нефелометрия подчиняются некоторым закономерностям, которые перестают действовать, когда размеры частиц дисперсной системы приближаются к длине волны падающего света.
В турбидиметрии пользуются соотношением, аналогичным закону Бугера –Ламберта – Бера, с заменой коэффициента светопоглощения на коэффициент мутности, выражение 3.15.
Д = ℓg
= tL , (3.15)где: t — коэффициент мутности;
L — толщина слоя.
Коэффициент мутности, это величина, обратная толщине такого поглощающего слоя, которая уменьшает интенсивность падающего светового потока в 10 раз.
В нефелометрии измеряют интенсивность светового потока, который дисперсная система рассеивает (Jр), а способность частиц к рассеиванию определяется размером частиц и длиной волны падающего света, что выражается уравнением Рэлея (выражение 3.16).
Jp = J0 [F(
) · (1 + соsQ)] , (3.16)где: F - функция от показателей преломления F = n12 -
; n — коэффициент преломления растворителя;n1 — коэффициент преломления частиц;
N — общее число частиц в данном растворе;
V — объём частиц взвесей, рассеивающих свет;
λ — длина волны падающего света;
R — расстояние от детектора (до наблюдателя);
Q — угол рассеивания между падающим и рассеянным потоками.
Если определяется только размер частиц и их концентрация, то измеряется интенсивность рассеянного света под одним углом. В этом случае уравнение Рэлея представляется в виде:
Jp = J0 · k · c · V
Градуировочный график в нефелометрии строят в координатах Jр — С.
Мутность дисперсной системы, в соответствии с уравнением Рэлея, можно выразить коэффициентом мутности или коэффициентом светопоглощения :
t =
, Д =Если взять отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, оно будет равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц.
Используя метод нефелометрии можно определить содержание сульфат-ионов, содержание хлорид-ионов и др. ионов в приготовленных растворах, а также в природных веществах.
Турбодиметрические и нефелометрические определения обладают чувствительностью соизмеримой с фотометрическими определениями. Эти методы в практике производственных лабораторий применяют ограниченно, т. к. трудно получить одинаковые по размерам частицы взвеси. Их, как правило, заменяют фотометрическими и электрометрическими методами.
3.5.5 Роль химической реакции, используемой в фотометрическом анализе
Химические реакции, используемые в фотометрическом анализе, несмотря на различие в их химизме, должны обязательно сопровождаться возникновением, изменением или ослаблением светопоглощения (цвета) раствора. Каждая цветная реакция должна протекать избирательно, быстро, полностью, строго по уравнению и в соответствии с законами стехиометрии.
Кроме того, окраска образующейся аналитической формы должна быть устойчивой во времени к действию света и других внутренних и внешних факторов. В тоже время, светопоглощение раствора, несущее информацию о концентрации поглощающего вещества, должно подчиняться законам, связывающим светопоглощение и концентрацию вещества в поглощающем растворе.
В неорганическом фотометрическом анализе наиболее часто используют реакции комплексообразования ионов определяемых элементов с неорганическими и органическими реагентами, реже реакции окисления-восстановления, синтеза и других типов.
В органическом фотометрическом анализе чаще применяют реакции синтеза окрашенных соединений, которыми могут быть азосоединения, полиметиловые и хинониминовые красители, отдельные представители нитросоединений и др. Иногда используют собственную окраску вещества.
При фотометрических определениях в результате аналитической реакции получают окрашенное соединение, которое можно считать удобным для применения, если оно имеет постоянный состав, отвечающий определённой химической формуле.
Постоянный состав окрашенного соединения обуславливает постоянство интенсивности окраски раствора и является одним из основных факторов, влияющих на точность фотометрического определения. Однако на практике этот принцип нарушается по нескольким причинам:
а) Непостоянство состава окрашенного комплекса в связи со ступенчатым характером его образования и диссоциации.
Например, ион Fe3+ образует с SCN- ряд комплексных ионов кроваво-красного цвета различной интенсивности в зависимости от избыточной концентрации [SCN-], моль/л.
[SCN-] = 5 · 10-3 Fe3+ + SCN- = [FeSCN]2+
[SCN-] = 1,2 · 102- Fe3+ + SCN- = [Fe(SCN)2]+
[SCN-] = 4 · 10-2 Fe3+ + SCN- = [Fe(SCN)3]0
[SCN-] = 1,6 · 10-1 Fe3+ + SCN- = [Fe(SCN)4]-
[SCN-] = 7 · 10-1 Fe3+ + SCN- = [Fe(SCN)5]2-
Чтобы избежать больших ошибок из-за непостоянства интенсивности окраски анализируемых растворов, необходимо выбирать такие реагенты, с которыми определяемый ион давал бы прочное комплексное соединение, состоящее из одного комплексного иона.
Если такой реагент выбрать невозможно, то определение следует проводить при избыточных, но одинаковых концентрациях реагента в стандартном и исследуемом растворах. Несоблюдение этого условия приводит к получению окрашенных растворов различной интенсивности и к ошибкам.
б) Разложение окрашенного соединения во времени.
Многие окрашенные соединения изменяют, интенсивность своей окраски во времени. Иногда, скорость реакции мала и образование окрашенных соединений происходит не сразу, а по истечении некоторого времени — (10-20 мин) достигает максимального и постоянного значения.
В других случаях образование окрашенного соединения происходит очень быстро, но спустя некоторое время интенсивность окраски начинает уменьшаться и может вообще обесцветиться. Это может произойти по причине окислительно-восстановительных реакций между реагирующими ионами, либо окрашенное соединение разрушается под влиянием присутствующих в растворе посторонних веществ, изменение рН среды, явлений ассоциации, ротолиза и др.
В фотометрическом анализе можно использовать только такие окрашенные соединения, которые сохраняют устойчивую окраску не менее 10-15 минут.
Иногда к исследуемому окрашенному раствору добавляют стабилизаторы — желатин, крахмал, гуммиарабик и др.
Если нет сведений об изменении интенсивности окраски во времени каких-то соединений, применяемых в фотометрическом анализе — можно получить такие сведения практически. Для этого нужно приготовить 2-3 пробы окрашенного соединения и проследить за изменением интенсивности его окраски в течение времени сравнивая со свежеприготовленными растворами той же концентрации визуально, или измерив оптическую плотность.
в) Изменение состава окрашенного комплекса по причине присутствия посторонних веществ, взаимодействующих с определяемым ионом или выбранным реагентом.
Посторонние ионы, присутствующие в анализируемом растворе одновременно с определяемым ионом часто оказывают значительное влияние на результаты фотометрического анализа.
Например, при определении Fe3+ присутствие небольших количеств фторид-ионов вызывает заметное обесцвечивание раствора роданида железа (Кр = 5,2 · 102), так как ионы железа связываются в более прочный фторидный комплекс (Кр = 1,6 · 10-5) и не при каких значениях рН раствора влияние фторид-ионов устранить не удаётся.
В присутствии фторид-ионов Fe3+ следует определять с помощью другого реагента, например, салициловой кислоты. Она при взаимодействии с Fe3+ образует более прочный салицилатный комплекс, что устраняет мешающее действие фторид-ионов.
Влияние рН на окрашенные комплексы выражается в различных формах, но чаще всего сводится к разрушению или изменению состава окрашенного соединения.
Иногда оно способствует образованию окрашенных комплексов с посторонними ионами, присутствующими в растворе, а также обуславливает изменение растворимости окрашенных соединений и влияет на состояние окислительно-восстановительного взаимодействия.
3.5.6 Классификация приборов для фотометрических измерений
Приборы в фотометрических измерениях и определениях предназначены для разложения электромагнитного излучения оптического диапазона на монохроматические составляющие с последующим измерением оптической плотности растворов. К ним относятся фотометрические приборы - фотоэлектроколориметры и спектрофотометры. В этих приборах аналитическим сигналом является светопоглощение анализируемого раствора.