Эффективная длина волны светофильтров
Номерсветофильтра | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Эффективная длина волны | 315 | 364 | 400 | 440 | 490 | 540 | 582 | 610 | 639 |
Для проведения измерений при перекрытых световых потоках на пути левого потока устанавливают кювету со стандартом, а на пути правого — кювету с исследуемым раствором и правый барабан устанавливают на полное пропускание — 100%.
Вращением левого измерительного барабана добиваются смыкания сектора индикаторной лампы. Затем на пути правого потока устанавливают кювету со стандартом и вращением правого барабана снова добиваются смыкания сектора индикаторной лампы. Оптическую плотность отсчитывают по шкале правого барабана.
В. Основные узлы приборов, к ним относятся:
1. Источники излучения — чаще ртутно-кварцевая лампа, галогеновая, водородная, дейтеривая;
2. Светофильтры;
3. Кюветы;
4. Фотоэлементы.
Кроме этого, в зависимости от конструкции и типа прибора, могут входить поворотные зеркала, призмы, дифракционные решётки, диафрагмы и т.д.
1. Светофильтры — это специальные устройства, выполненные из окрашенного прозрачного материала, чаще цветного стекла, которое используется для регулировки длин волн, получения монохроматического излучения. Для каждого анализа светофильтр выбирают опытным путём, для этого измеряют оптическую плотность с различными светофильтрами одного и того же раствора и строят кривую зависимости оптической плотности (Д) от длины волны (λ).
2.
Д maxλmax λ
Выбирают светофильтр такой длины волны, при котором поглощение света раствором max, когда светофильтр пропускает максимальное количество света.
3. Кюветы — сосуды, изготовленные из прозрачного материала, в которые помещают исследуемый раствор. На рабочей поверхности кюветы указывается толщина слоя с точностью до 0,001. Выбор кюветы осуществляется опытным путём, для этого измеряют оптическую плотность одного и того же раствора в кюветах разной толщины и выбирают ту, для которой оптическая плотность (Д) приближена к 0,4. Д = 0,4, т.к. шкала прибора на разных участках имеет разную относительную ошибку, а в области Д = 0,4 эта ошибка минимальна.
Например, экспериментально найдены результаты:
Толщина к4юветы, мм | 5 | 10 | 20 | 30 | 50 |
Оптическая плотность | 1,12 | 0,38 | 0,65 | 1,02 | 1,30 |
Следовательно, для данного определения целесообразнее выбрать: h = 10 мм
4. Конденсоры — устройства, которые представляют линзу или систему линз, позволяющие направлять световой поток параллельным пучком
5. Фотоэлементы, устройства, предназначенные для перевода световой энергии в электрическую, см. раздел 3.5.7.
3.6 Рефрактометрический метод анализа
Метод, основанный на измерении показателя преломления светового потока при прохождении его через анализируемый раствор, называется рефрактометрическим. Он широко применяется как в лабораторной, так и в промышленной практике.
С помощью рефрактометрического метода быстро определяют концентрации водных, спиртовых эфирных и других растворов. Им пользуются в лабораториях и автоматизированных линиях аналитического контроля химической нефтехимической, фармацевтической и пищевой промышленности. Его применяют при идентификации и установлении чистоты толуола, бензола, керосина, водно-спиртовых смесей, сахара, вина, а также при аналитическом контроле производства синтетического каучука, волокон, пластмасс и др. продукции.
3.6.1 Теоретические основы метода
При переходе луча света из одной прозрачной среды в другую, направление его меняется, рис. 3.10. Это явление называется преломлением.
Известно, что при прохождении света через оптически более плотную среду его скорость уменьшается. Замечено, что при этом угол падения луча при выходе из среды изменяется. При переходе луча из среды менее оптически плотной в среду более оптически плотную угол падения луча (α) больше угла преломления (β), таким же образом изменяется и скорость распространения световых волн.
Отношение синуса угла падения к синусу угла преломления называется относительным показателем преломления второй (анализируемой) среды относительно первой (эталонной), выражение 3.6.1.
Sin α / sin β = v1 / v2 = n (3.6.1)
Показатель преломления зависит от природы вещества, температуры и длины волны света.. Например, для температуры 200 С и длины волны 589 нм показатели преломления п некоторых веществ имеют следующие значения: стекло 1,5 – 1,9; алмаз – 2,42; плавленый кварц – 1,46; кристаллический кварц – 1,54; глицерин – 1,47; этиловый спирт – 1,36; вода – 1,3330 (при 150С – 1,3395, при 250С - 1,3325). Поэтому при точных измерениях показателя преломления анализируемого вещества необходимо соблюдать постоянство температуры.
С увеличением длины волны показатели преломления уменьшаются. В табл. 3.6.1 приведены длины волн, при которых обычно определяют показатели преломления.
Таблица 3.6.1.
Показатели преломления воды для световых волн различной длины
Источник света | Цветлиний | Обозначениялиний | Длина волны, нм | Обозначение | n,приT=200C |
Водородная трубкаНатровая лампаВодородная трубка | КрасныйЖёлтыйСиний | CDF | 656,3589,3486,1 | nCnDnF | 1,33111,33301,3371 |
При измерении показателя преломления необходим источник света, дакющий излучение определённой длины волны (натровые, ртутные, водородные лампы). Табличные показатели преломления приводятся для длины волны 589нм и обозначаются nD//
Количественно дисперсию оценивают как разность показателей преломления для различных длин волн, выражение 3.6.2. Разность nF – nC называют средней дисперсией.
D = nλ2 - nλ1 (3.6.2)
Показатель преломления определяют с помощью приборов, называемых рефрактометрами. В большинстве рефрактометров измерение ведётся при дневном свете или с помощью лампы накаливания. Эти приборы снабжаются компенсаторами дисперсии.
Определение показателя преломления вещества сводится обычно к измерению предельного угла преломления на границе «жидкость – стекло».
Допустим, что первая среда является жидкостью и необходимо измерить её показатель преломления - п1. Вторая среда представляет собой стекло призмы с показателем преломления п2. Вторая среда оптически более плотная, чем первая, а это значит, что п2 > п1 и угол преломления меньше угла падения. С увеличением угла падения увеличивается и угол преломления. Когда угол падения равен 900, луч света скользит по поверхности раздела. Если же угол падения меньше 900, то луч претерпевает преломление и попадает в зрительную трубу прибора. Этот луч называется предельным лучом, а угол преломления – предельным углом преломления. Для двух сред относительный показатель преломления может быть рассчитан по выражению, 3.6.3.
nотн = sinα /sinβ = n2 /n1 (3.6.3)
Показатель преломления призмы п2 всегда известен, поэтому остаётся найти показатель преломления первой среды п1 путём измерения угла преломления β.
n1 = n2sinβ
В лабораторной практике наиболее часто используются рефрактометры типа Аббе и типа Пульфриха. Большее применение нашли рефрактометры типа Аббе: рефрактометр лабораторный универсальный РЛУ, рефрактометр ИРФ-22, рефрактометр лабораторный пищевой РПЛ и др. Оптические схемы и техника работы на этих приборах одинаковы, отличаются они несколько по конструкции.
Призма Амичи состоит из трёх склеенных призм с различными показателями преломления и различной дисперсией. Призмы рассчитаны так, что при прохождении через них цветных лучей только жёлтые лучи (линии D в спектре натрия) не меняют, не меняют своего направления. Устройство такого рода получило название дисперсионного компенсатора. Меняя положение призмы Амичи (или поворачивая одну призму относительно другой). Можно лучи разложенные измерительной призмой . собрать в один луч. Его направление будет таким же как и луча D , показатель преломления соответственно nD.
Рефрактометры типа Пульфриха более сложны в обращении и требуют специального источника света. Шкала рефрактометра градуирована в углах и нужно, производить пересчёт их на показатель преломления по специальным таблицам.
4. Электрохимические методы анализа
Электрохимические методы анализа основаны на использовании зависимости электрохимических параметров — электропроводности, сопротивления, силы тока и др. от концентрации и природы вещества, участвующего в электрохимической реакции. Электрохимические параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно.
Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте Оствальда в Лейпциге, а в 1902 г. появились труды по применению кондуктометрического титрования. А ещё в 1830 г. А.Беккерель провёл осаждение ионов свинца и марганца на положительном электроде в процессе электролиза, тем самым, положив начало электрогравиметрии.