1.1 Общие сведения о методах анализа состава и измерения параметров продукции
В основе определения состава и свойств продукции лежит химический анализ. Он связан с проведением качественного и количественного анализа состава продукции и сравнением полученных результатов с установленными нормативно-технической документацией требованиями.
Химический анализ в широком смысле этого понятия, включающий физические и физико-химические методы, является составной частью метрологии. Его особенностью является предварительное проведение качественного анализа, т. е. идентификации химических частиц различного рода (атомов, молекул, ионов, радикалов) с последующим определением их количества (качественный анализ) в анализируемом продукте.
Цели, с которыми проводится качественный или количественный химический анализ состава продукции разнообразны. В зависимости от решаемых задач и глубины проверки продукции результаты могут быть получены проведением следующих анализов: атомного, молекулярного, функционального и валового. Атомный (элементный) и молекулярный анализы заключаются в контроле состава веществ на уровне атомов или молекул. Функциональный анализ заключается в определении состава функциональных групп в химических соединениях. Валовой анализ применяется в случае проверки сложных смесей веществ (горные породы, цемент), когда состав пробы выражается в виде условно выбранных соединений, например оксидов.
Состав продукции проверяется измерением количества или физических свойств, входящих в неё веществ. Измерения производятся непосредственно или же после соответствующей подготовки продукции (разделение, концентрирование, перевод в удобную для измерения форму и др.). Процесс завершается измерением величины аналитического сигнала. Для получения аналитического сигнала, как правило, используются три группы методов: химические, физические и физико-химические.
Химические методы основаны на химических реакциях определяемого компонента с реагентом. Эффектом реакции может быть образование малорастворимого осадка, малодиссациированного соединения или прочного комплексного соединения.
В физических методах измеряется свойство (интенсивность излучения света, радиоактивного излучения и др.), непосредственно зависящее от природы атомов и их концентрации в веществе. При этом химические реакции или совсем не играют роли, или имеют второстепенное значение.
В физико-химических методах анализа определяются изменения физических свойств системы (коэффициента преломления света, электрической проводимости, поглощения света и др.), происходящие в результате химических или электрохимических реакций. Интенсивность физического сигнала зависит от концентрации определяемого компонента.
Между химическими и физико-химическими, физическими и физико-химическими методами анализа не всегда можно провести чёткую границу. Например, измерение электрической проводимости растворов (кондуктометрия) не требует проведения химических реакций и относится к физическим методам, тогда как определение изменения электрической проводимости при титровании кислоты щёлочью (кондуктометрическое титрование) является физико-химическим методом. Иногда физические и физико-химические методы объединяются под общим названием инструментальные методы, так как для измерения сигналов используется прецизионная аппаратура.
1.2. Физико- химические методы анализа и их место в системе контроля качества продукции
Свойства веществ и материалов, производимой и реализуемой продукции, изучаются с использованием методов современной аналитической химии, которые направлены на решение задач управления качеством продукции.
Основными рабочими средствами аналитической химии являются физические и физико – химические методы анализа. Всё большее число используемых в них принципов контроля реализуются в инструментальных методах. Появляются узкоспециализированные приборы для автоматического контроля химико – технологических процессов. Увеличивается число приборов, сочетающих несколько аналитических методов (газовые и жидкостные хроматографы, хромато-масс-спектрометры и др.).
Физические и физико-химические методы анализа являются естественным продолжением курса химических методов анализа, и основывается на регистрации аналитических сигналов, появление которых зависит от физико-химических свойств вещества, его природы и содержания в анализируемом продукте.
Классические методы анализа применяются в специализированных аналитических лабораториях. Их проведение связано с периодическим отбором проб анализируемых продуктов, что не всегда удобно, эффективно и не обеспечивает высокую скорость получения результата. Вместе с тем, они не в состоянии удовлетворить многообразные запросы науки, техники, промышленности и социальной жизни людей. Этих недостатков лишены физические и физико-химические методы, а доступность аппаратуры делает их востребованными в практике всех сфер деятельности людей.
Современные отрасли производства и социальной жизни людей ставят свои специфические задачи перед физическими и физико – химическими методами анализа по контролю качества продукции.
Выплавляя чугун или сталь, металлург должен знать качественный и количественный состав плавок. Вместе с содержанием основного металла в сплаве ему необходимы данные о составе используемых исходных веществах и их свойствах. Контроль этих параметров позволяет непосредственно судить о режиме плавки, так как они характеризуют качество получаемых сплавов, а также при необходимости производить соответствующие корректировки технологических процессов. Например, жаропрочные сплавы металлов теряют свои свойства, если количество “запрещенных” примесей в них превысит 10-5%. Вместе с тем, определение малых концентраций примесей практически невозможно химическими методами. Поэтому для решения задач такого рода применяются физические и физико-химические методы анализа, обладающие самым низким пределом обнаружения примесей.
В ходе протекания химико-технологических процессов производства продукции изменяются химический состав перерабатываемых веществ и их свойства. Контроль этих параметров позволяет непосредственно судить о режиме процесса, составе получаемых продуктов, а скорость получения данных своевременно вносить соответствующие корректировки. Поэтому на химических предприятиях применяются методы автоматизированного контроля, которые реализуются с применением приборов называемых анализаторами.
Наряду с черной и цветной металлургией, химической промышленностью и другими традиционными отраслями большое значение стали иметь отрасли по освоению атомной энергии в мирных целях, связанные с ракетостроением, освоением космоса, развитием полупроводниковой промышленности, электроники, компьютеров, чистых и сверхчистых веществ.
Развитие перечисленных отраслей поставило перед специалистами задачу снизить предел обнаружения примесей в производимых веществах до 10-5 – 10-10%.Это стало возможным только при условии применения физических и физико-химических методов анализа.
Впечатляют примеры, показывающие связь свойств с загрязнением примесями полупроводниковых материалов, из которых изготавливаются радиоэлектронные элементы с загрязнением исходных материалов, используемых для их изготовления «вредными» примесями. Германий, применяемый в электронной промышленности, утрачивает свои полупроводниковые свойства, если загрязнен фосфором или мышьяком в пределах 10-10%. Цирконий, являющийся конструкционным материалом для ядерной промышленности, при наличии в нем примеси гафния в пределах 10-5%, недопустим к применению.
Подобные примеры можно приводить и с лекарственными препаратами, продукцией парфюмерной, пищевой и текстильной промышленности. Наличие вредных примесей в них может негативно повлиять на состояние здоровья людей. Поэтому без применения физических и физико-химических методов анализа сложно контролировать выпуск продукции, проверить качество поступившей в продажу продукции, а значит и разрешать возникающие спорные вопросы между покупателем и продавцом.
Особенное значение приобрели физико-химические методы анализа для решения задач экологической направленности, а также в медицинской и судебно-экспертной практике, так как только с их помощью можно быстро получить достоверные результаты.
Нельзя обойти стороной применение физических и физико-химических методов анализа в военном деле и гражданской обороне. Методы, реализованные в средствах радиационной, химической и биологической разведки позволяют оперативно проводить проверку зараженности атмосферы, техники, имущества, продуктов питания и идентифицировать токсичные вещества. Войсковые газоанализаторы позволяют определять в атмосфере токсичные вещества в концентрациях до 10-5%. Индикаторы для определения сильнодействующих ядовитых веществ (СДЯВ, табл. 1) и токсичных примесей в испарениях ракетного топлива реагируют на концентрации10-5–10-7%, что многократно превышает предельно-допустимые нормы.
Таблица 1
Предельно допустимые нормы концентраций
сильнодействующих ядовитых веществ в атмосфере
№ п/п | Наименование СДЯВ | Величина пороговой токсодозы, г/см3 |
1 | Аммиак | 454 |
2 | Гидразин | 14 |
3 | Окись углерода | 1620 |
4 | Окись этилена | 3600 |
5 | Двуокись серы | 194 |
6 | Сероводород | 2592 |
7 | Фосген | 13 |
8 | Цианистый водород | 36 |
9 | Хлор | 36 |
Примечание. В таблице приведены значение пороговых токсодоз для взрослых людей, для детей – в 4-10 раз меньше.