Средства измерений в зависимости от точности принятых в его конструктивной реализации решений адекватных выбранному принципу измерений физической величины является источником инструментальной погрешности. Часто наиболее существенных среди всех других источников погрешность. Например в случае неравенства плеч коромысла весов измеряемая масса будет уравновешиваться набором гирь (даже самых точных) с погрешностью вызываемой неравенством плеч. Погрешность будет представлять в виде инструментальной погрешности (одинаково присутствующих при всех измерениях).
Источником погрешности измерения, иногда достаточно грубой, может являться недостаточная квалификация оператора, его слабая подготовленность к измерениям, иногда и невнимательность.
Классификация погрешностей измерений
Погрешность измерений классифицируются следующим образом:
– по форме представления информации: абсолютная, относительные, приведённые. Абсолютная выражаемая в единицах измерения величины представляется разностью между измеренным и истинным значением измеряемой величины. Абсолютная погрешность средства измерения соответствует указанному определению, но для меры и измерительного прибора имеет различный смысл. Абсолютная погрешность меры – разность между номинальным значением меры и истинным значением воспроизводимой ею величины. Абсолют погрешность измерительного прибора представляется разность между показаниями прибора и истинным значением измеряемой величины. Показание прибора – значение измеряемой величины, определяемое по его отчётному устройству.
Относительная погрешность предоставляется отношением абсолютной погрешности к истинному значению измеряемой величины Допускается вместо в уравнении пользоваться показаниями прибора. Обычно выражается в процентах. Приведённая погрешность измерения – отношение абсолютной погрешности к нормирующему значению величины. Нормирующее значение в зависимости от типа прибора принимается равной верхнему пределу измерения (в случае если нижний предел равен нулю).
Классификация погрешностей измерения
Погрешности измерения классифицируются следующим образом.
По форме представления информации погрешности делятся на:
– абсолютные
– относительные
– приведенные.
Абсолютная погрешность измерений ∆ выражаемая в единицах измеряемой величины, представляется разностью между измеренным и истинным (действительным) значением измеряемой величины ∆ = xизм-хп(д)
Абсолютная погрешность средства измерений соответствует указанному определению, но для меры и измерительного прибора имеет различный смысл. Абсолютная погрешность меры – разность между номинальным значением меры и истинным (действительным) значением воспроизводимой ею величины. Абсолютная погрешность измерительного прибора представляется разностью между показанием прибора и истинным (действительным) значением измеряемой величины определяемое по отсчётному устройству.
Относительная погрешность δ представляется отношением абсолютной погрешности к истинному (действительному) значению измеряемой величины δ= ∆/ хп(д). Допускается в уравнении вместо хп(д) пользоваться показаниями измерительного прибора. Обычно относительная погрешность выражается в процентах.
Приведённая погрешностьγ (измерительного) прибора – отношение абсолютной погрешности к нормирующему значению хп γ =∆/ хп
Нормирующее значение в зависимости от типа измерительного прибора принимается равным верхнему пределу измерений (в случае, если нижний предел – нулевое значение односторонней шкалы прибора)
Большинство измерительных приборов представляют собой совокупность измерительных преобразователей и, естественно, сигналы измерительной информации на выходе и на входе средства измерений могут не совпадать как по значению так и по природе физической величины (в датчиках). Соотношение между входными и выходными сигналами называется функцией преобразования средства измерений. Для датчиков функция преобразования является основной метрологической характеристикой. Функция преобразования может быть представлена формулой, таблицей, графиком (рис. 1)
где x – значение величины на входе; y – значение величины на входе средства измерений;
Для данного типа средства измерений (измерительного преобразователя) т.е. для множества однотипных средств измерений, функция преобразования является номинальной (действительной)характеристикой. Реальная функция преобразования конкретного измерительного преобразователя в большей или меньшей мере отличается от номинальной. Поэтому в технической документации на средства измерений обычно устанавливается область допустимых отклонений реальной функции преобразования от номинальной. Средство измерения с допускаемыми отклонениями функции преобразования метрологически исправным.
Если на входе прибора сигнал х1 (рис 1а), то на выходе измеренное значение у1, а номинальное (действительное) значение ун. Очевидно, абсолютная погрешность измерения по выходу будет ∆y = y1-yн. Таким же образом можно определить в соответствии с реальной и номинальной функциями преобразовании абсолютную погрешность при других значениях входного сигнала и построить зависимость изменения абсолютной погрешности преобразователя (по входу) в зависимости от значений входного сигнала. Если номинальная функция преобразования линейна, а реальная нелинейна, то зависимость погрешности по выходу имеет вид кривой, показанной на рисунке 1б. т.е. эта зависимость в принятом масштабе «повторяет» реальную функцию преобразования.
Иногда используют понятие «абсолютная погрешность средства измерения по входу», которая представляется разностью между значением величины на входе средства измерения и её действительными значениями на входе (рис1а) ∆x = x1-xн Для линейного преобразования погрешность по входу можно записать в виде ∆y = y1-кнx1 где кн =tgα– угловой коэффициент, называемый коэффициентом преобразования. Тогда погрешность по входу будет иметь вид ∆x = кн-1y1-x1. В общем случае ∆y = y-fн(x), где fн(x) – номинальная (действительная) функция преобразования; y – измеренное значение сигнала. ∆x = fн-1(x) – x где fн-1(y) – функция обратного преобразования, приводящая к значению сигнала на входе хн (рис1а), x– измеренное (реальное) значение сигнала на входе.
2. По характеру изменения результатов при повторных измерениях погрешности разделяются на: систематические, случайные. Систематическими называются погрешности которые при повторных измерениях остаются постоянными или изменяются закономерно, обычно прогрессируя. Постоянные систематические погрешности свидетельствуют о высоких или недостаточных показателях метрологической надёжности применяемого средства измерения и могут быть устранены (учтены) предусмотренными аппаратурными методами коррекции или введением поправок в результаты измерений. Одной из распространённой систематической погрешностей является погрешность градуировки. Данная погрешность легко выявляется, составляется таблица поправок которая используется при определении результатов измерений.