Переход к разработке систем приборов, объединенных одним принципом действия, позволяет получать большое число разнообразных измерительных устройств из небольшого количества типовых блоков. Кроме того, значительно повышаются надежность и стабильность измерительных приборов, упрощается их эксплуатация.
По роду вспомогательной энергии сигналов, а также виду сигналов приборы и средства автоматизации делятся на 5 групп, которые называются ветвями: электрическую аналоговую, электрическую дискретную, пневматическую, гидравлическую, приборов и устройств без источников вспомогательной энергии.
Электрическая аналоговая ветвь является системой, в которой энергетическим сигналом информации служит непрерывный электрический сигнал. Система состоит из устройств для получения информации (преобразователей), приборов и устройств для преобразования, хранения и обработки информации, называемых центральной частью ветви. В центральной части значительное место занимают вторичные приборы: индикаторные, показывающие и регистрирующие, интеграторы, приборы системы «по вызову». Пределы изменения токовых сигналов постоянного тока выбираются из ряда значений 0-10 мВ. При использовании переменного тока изменение сигнала выбирается в пределах 0-1 и 0-2 В.
Электрическая дискретная (цифровая) ветвь является системой, в которой энергетическим носителем информации служит электрический дискретный сигнал в виде постоянного тока или направления. Дискретная ветвь состоит из различных приборов и средств автоматизации: преобразователей, блоков и устройств централизованного контроля; устройств представления информации; цифровых вычислительных устройств. Использование основных блоков этой ветви позволяет обрабатывать результаты измерений для непосредственного воздействия на объект управления. Устройства цифровой техники дают возможность решать ряд задач управления, которые не могут быть осуществлены в аналоговой ветви. Кроме того, цифровые устройства превосходят другие по надежности и простоте эксплуатации. Параметры сигналов унифицированы. Так, частотные диапазоны находятся в пределах 1500-2500 Гц.
Пневматическая ветвь является системой, в которой энергетическим носителем информации служит пневматический сигнал (давление сжатого воздуха). Благодаря высокой надежности пневматической аппаратуры, простоте обслуживания, невысокой стоимости, пожаро- и взрывобезопасности приборы этой ветви получили широкое распространение в пищевой промышленности. Они строятся из унифицированных универсальных пневмоэлементов. Рабочий диапазон изменения входных и выходных пневматических сигналов находится в пределах 19,6-98 кПа. Номинальное давление питания 140 кПа.
Гидравлическая ветвь представляет собой систему, в которой энергетическим носителем информации является гидравлический сигнал. В этой ветви мало приборов и устройств для приема и выдачи информации в каналы связи, а также для преобразования, хранения и обработки информации. Основным преобразователем и усилительным элементом служит струйный усилитель, преобразующий кинетическую энергию струи жидкости в потенциальную, которая используется в последующих усилителях.
Применение гидравлических регуляторов ограничено спецификой вида энергоносителя сигналов (например, масло не применяется на пожаро- и взрывоопасных производствах). Устройства гидравлической ветви применяются там, где требуются значительные перестановочные усилия для перемещения регулирующих органов при плавности их хода и высокой чувствительности. Давление рабочей жидкости лежит в пределах 1 - 6,4 МПа.
Ветвь приборов и устройств, работающих без источников вспомогательной энергии, является системой, использующей для работы энергию той среды, параметры которой она измеряет и регулирует. Например, для измерения давления часто применяют трубчатые манометры, которые устанавливаются непосредственно на аппаратах. При изменении давления в аппарате трубка в манометре начинает изгибаться, механически связанная с трубкой стрелка манометра отклоняется и показывает действительное давление в аппарате. Структура ветви охватывает регуляторы температуры, давления, расхода, уровня и др.
По функциональным признакам каждая ветвь ГСП подразделяется на устройства, предназначенные для получения информации о состоянии процесса (преобразователи); для приема и выдачи информации в каналы связи; для преобразования, хранения и обработки информации; для использования информации в целях воздействия на процесс и связи с оператором; для одновременного выполнения нескольких из перечисленных функций.
4. Задачи нормоконтролера
Нормоконтроль - контроль выполнения конструкторской документации в соответствии с нормами, требованиями и правилами, установленными нормативными документами.
Нормоконтроль проводится в целях обеспечения однозначности применения конструкторской документации и установленных в ней норм, требований и правил на всех стадиях жизненного цикла изделия.
Основными задачами нормоконтроля являются обеспечение:
а) соблюдения в конструкторской документации норм, требований и правил, установленных в стандартах ЕСКД и в других нормативных документах, указанных в документации;
б) достижения в разрабатываемых изделиях высокого уровня унификации и стандартизации на основе широкого использования ранее спроектированных, освоенных в производстве и стандартизованных изделий, типовых конструкторских и схемных решений;
в) рационального применения ограничительных номенклатур покупных и стандартизованных изделий и их документов, норм (типоразмеров, квалитетов точности, условно-графических обозначений и др.), марок материалов, полуфабрикатов и т.п.;
г) достижения единообразия в оформлении, учете, хранении, изменении конструкторской документации;
д) возможности соблюдения нормативных требований в условиях выпуска документов автоматизированным способом.
Нормоконтроля подлежит конструкторская документация на изделия основного и вспомогательного производства независимо от форм собственности, подчиненности и служебных функций организаций, выпустивших указанную документацию.
Нормоконтроля конструкторской документации, выполняемой на магнитных носителях данных, следует проводить в соответствии с нормативными документами по выполнению конструкторских документов на магнитных носителях данных, в том числе и по ГОСТ 28388-89.
5. Требования, предъявляемые к тексту стандарта
В зависимости от особенностей и содержания стандарта требования излагают в виде текста, таблиц, графического материала (рисунков, схем, диаграмм) или их сочетаний.
Текст стандарта должен быть кратким, точным, не допускающим различных толкований, логически последовательным, необходимым и достаточным для применения стандарта в соответствии с его областью применения.
В стандарт следует включать только характеристики и требования, которые могут быть проверены объективными методами.
В стандарте следует применять термины, определения, обозначения и сокращения, установленные действующими стандартами.
Если термины и определения, обозначения и сокращения, принятые в стандарте, не установлены другими стандартами, то при необходимости их приводят соответственно в структурных элементах текста «Определения» и «Обозначения и сокращения».
При изложении обязательных требований в тексте стандарта следует применять слова «должен», «следует», «необходимо», «требуется, чтобы», «разрешается только», «не допускается», «запрещается», «не следует». При изложении других положений следует применять слова - «могут быть», «как правило», «при необходимости», «может иметь», «в случае», «допускается», «рекомендуется» и т.д.
При этом допускается использовать повествовательную форму изложения текста стандарта, например, «применяют», «указывают» и т.п.
Приводя наибольшие или наименьшие значения величин, следует применять словосочетание «должно быть не более (не менее)». Приводя допустимые значения отклонений от указанных в стандарте норм, требований, применяют словосочетание «не должно быть более (менее)».
Пример - Массовая доля углекислого натрия в технической кальцинированной соде должна быть не менее 99,4 %.
Устанавливаемые стандартом числовые значения величин, необходимые для изготовления продукции с заданной точностью, ее применения и контроля, должны быть заданы с предельными отклонениями или указаны в виде наибольших и (или) наименьших значений.
Примеры
1 80 мм ± 2 мм
При указании числовых значений в процентах следует писать:
«¼от 63% до 67%» или «(65±2)% (а не 65±2%).
Данные о физических константах и свойствах веществ и материалов следует приводить в документе с указанием категории данных по ГОСТ 8.310.
Римские цифры следует применять только для обозначения сорта (категории, класса и др.) изделия, валентности химических элементов, кварталов года, полугодия. В остальных случаях применяют арабские цифры.
Римские цифры, даты, указанные арабскими цифрами, и количественные числительные, как правило, не должны иметь падежных окончаний.