Угловая скорость кулисы:
Угловое ускорение кулисы:
Составим векторное уравнение:
Проектируем на оси координат:
Расчет скоростей и ускорений для первого положения механизма.
Угловая скорость кулисы:
Угловое ускорение кулисы:
; рад/с2 ;Скорость точки С :
; ; м/с;Ускорение точки C :
; рад/с2;2 Силовой анализ рычажного механизма
2.1 Определение сил инерции
Исходные данные:
w1=15,71 рад/с;
Q=3450 Н;
m5=35 кг;
m3’=12 кг;
m3’’=30 кг;
Определим силы инерции:
U5=-m5·aC;
U5= m5·PaC·Ka;
U5=35·30,6·0,5=535,5 (Н);
U3’=-m3’∙aS3’;
U3’=m3’·PaS’·Ka;
U3’=12·45·0,5=270 (Н);
U3’’=-m3’’∙aS3’’;
U3’’=m3’’·PaS’’·Ka;
U3’’=30·17·0,5=255 (Н);
Определим веса звеньев:
G5=m5·g;
G3’=m3’·g;
G3’’=m3’’·g;
G5=35·9,8=343,35 (Н);
G3’=12·9,8=117,72 (Н);
G3’’=30·9,8=294,3 (Н);
Сила полезного сопротивления Q=3450 Н.
Разбиваем механизм на группы Ассура в соответствии с формулой строения I(0,1)→II(2,3)→II (4,5). Начинаем силовой рассчёт самой удалённой от кривошипа диады.
2.2 Расчёт диады II (4,5)
Выделим из механизма диаду 4-5 и нагружаем её силами. Составляем уравнение равновесия диады 4-5:
∑Р(4,5)=, R50+Q+G5+U5+R43=0 (1)
Уравнение содержит два неизвестных- модули реакций R50 и R43, поэтому оно решается графически. Строим план сил по уравнению равновесия (1).
Для построения плана сил выбираем масштаб сил Кр
Кр=
=3450/172,5=20 н/ммИз плана сил определяем реакции:
R50= R50 Кр=66·20=1320 Н;
R43= R43 Кр=221·20=4420 Н;
2.3 Расчёт диады II (2,3)
Выделим диаду 2-3 и нагрузим её силами. Действие отброшенных звеньев 1,0 на третье заменяем действием реакций связей R21 и R30, которые требуется определить. Реакцию R21 направляем перпендикулярно линии движения ползуна, модуль неизвестен. Реакция R30 в шарнире О2 неизвестна ни по модулю ни по направлению; на схеме направляем её произвольно. Действие отброшенного звена 4 на третье известно: Реакция R34 равна по величине и противоположно направлена реакции R43, которая уже определена из плана сил диады II (4,5). Силы тяжести G3’ и G3’’ наносим на диаду в центрах масс стержней S3’ и S3’’. Силы инерции U3’ и U3’’ прикладываем в точках К’ и К’’, расположенных на расстоянии 2/3 длин стержней. Силы инерции направляем противоположно ускорениям центров масс согласно плана ускорений.
Составляем условия равновесия диады II(2,3):
∑Р(2,3)=0, R21+G3’+U3’+G3’’+U3’’+R34+R30=0 (2)
Данное уравнение содержит три неизвестных: модуль реакции R21, модуль и направление реакции R30. Значит уравнение (2) графически не решается. Реакция R21 может быть определена аналитически из уравнения моментов сил относительно точки О2.
∑М О2 (зв.2,3)=0, R21·AO2-U3’·hu3’+G3’·hg3’-U3’’·hu3’’-G3''·hg3’’-R34·O2C=0;
Откуда
R21= (U3’·hu3’- G3’·hg3’+ U3’’·hu3’’+ G3''·hg3’’+ R34·O2C)/ AO2
R21=(270·233-117,72·53+255·102-294,3·74+4500·132)/280=2539 Н
Теперь уравнение (2) содержит два неизвестных, а следовательно решается графически.
Строим план сил диады II(2,3) по уравнению (2). Считаем отрезки плана сил:
= U3’/Кр=270/20=13,5 мм. = U3’’/ Кр=255/20=12,75 мм. = R21/ Кр=2539/20=126,95 мм. = G3’/ Кр=117,72/20=5,8 мм. = G3''/ Кр=294,3/20=14,7 мм.Согласно уравнению (2) строим сумму векторов сил, откуда находим:
R30=
·Кр=274·20=5480 Н.2.4 Расчёт кривошипа
Силовой расчёт кривошипа состоит в определении реакции стойки на кривошип R10 и уравновешивающей силы Ру, имитирующей действие силы со стороны двигателя.
Реакция R21 известна, так как R12= R21. Величина Рур определиться из уравнения моментов сил относительно точки О1 кривошипа.
∑М О1 (зв.1)=0, Рур·АО1-R12·hR12=0
Рур’= R12·hR12/ АО1=2539 40/88=1154 Н
Реакция стойки на кривошип R10 определиться из условия равновесия кривошипа:
P(кр)=R21+Py+R10=0 (3)По уравнению (3) строим план сил кривошипа, откуда определяем искомую реакцию R10
R10= R10·Кр=110·20=2200 Н.
2.5 Определение уравновешивающей силы методом Жуковского
Уравновешивающую силу можно определить с помощью план скоростей по методу рычага Жуковского.
Строим повёрнутый на 90˚план скоростей и приложим к нему все внешние силы, действующие на механизм. План скоростей рассматриваем как жёсткий рычаг с опорой в полюсе. Рычаг находится в равновесии под действием приложенных сил.
Составляем уравнение равновесия рычага в форме суммы моментов сил в форме суммы моментов сил относительно полюса плана скоростей.
∑МPv1=0
Pyp’·Pva-(Q+U5+G5)·PvC-U3’’·hU3’’-G3’’·hG3’’-U3’·hU3’+G3’·hG3’=0
Pyp’=((Q+U5+G5)·PvC+ U3’’·hU3’’+ G3’’·hG3’’+ U3’·hU3’- G3’·hG3’)/ Pva
Pyp’=((3450+535,5+343,35)·47+255·33+294,3·24+270·69-117,72·13)/179
Pyp’=1173 Н
Сравниваем значения Pyp и Pyp’, найденные двумя способами
δ=( Pyp’- Pyp)/ Pyp’
δ=(1173-1154)·100%/1173=1,62%
2.6 Определение мощности
Мгновенная потребная мощность привода насоса без учёта потерь мощности на трение определяется соотношением:
Npy=Pyp·VA=1173·3,46=4058,58 Вт
Мощность привода, затраченная на преодоления только полезной нагрузки:
NQ=Q·Vc=3450·0,95=3277,5 Вт
Потери мощности во вращательных кинематических парах:
N10=R10·f’·(ω1-ω0)·rц=2200·0,132·15,71·0,025=114,5 Вт
N12=R12·f’·(ω1-ω3)·rц=2539·0,132·10,77·0,025=90,2 Вт
N30=R30·f’·(ω3-ω0)·rц=5480·0,132·4,94·0,025=89,3 Вт
N45=R45·f’·(ω3-ω5)·rц=4420·0,132·4,94·0,025=72,05 Вт
Где rц-радиус цапфы вала, rц=0,025 м,
f’- приведенный коэффициент трения, f’=(1,2…1,5)f=0,132
Потери мощности в поступательных кинематических парах:
N23=R23·f’·VA’A=2539·0,132·1,65=553 Вт
N34=R34·f’·VC’C=4420·0,132·0,85=495 Вт
N50=R50·f’·VC=1320·0,132·0,95=165,5 Вт
Суммарная мощность трения:
Nтр=∑Ni=N10+N12+N30+N45+N23+N34+N50
Nтр=114,5+90,2+89,3+72,05+553+495+165,5=1579,2 Вт
Мгновенная потребляемая мощность двигателя:
N=NРу+Nтр
N=4058,58+1579,2=5637,78 Вт
2.7 Определение кинетической энергии и приведенного момента инерции механизма
Кинетическая энергия механизма равна сумме кинетической энергии звеньев:
Тмех=∑Тi
Для механизма насоса с заданными параметрами кинетическая энергия звена равна:
∑Тi=Т3+Т5=
Где
JO2’=
=12·0,352/3=0,49 кг·м2JO2’’=
=30·0,1552/3=0,24 кг·м2Т3=(0,49+0,24)·4,942/2=8,9 Дж
Т5=35·0,95/2=16,62 Дж
Тмех=8,9+16,62=25,52 Дж
За звено приведения обычно выбирают ведущее звено. Так как у исследуемого механизма ведущим звеном является кривошип, то кинетическая энергия определится по формуле:
Tпр=
Откуда находим приведенный момент инерции:
Jпр=
Jпр=2·25,52/15,712=0,2 кг·м2
3 Геометрический расчет зубчатой передачи. Проектирование планетарного механизма
3.1 Геометрический расчет зубчатой передачи
Исходные данные:
Число зубьев шестерни Z5=11;
Число зубьев колеса Z6=25;
Модуль m=6 мм;
Нарезание проводится методом обкатки инструментом реечного типа, который профилируется на основе исходного контура по ГОСТ 13755-81 и имеет следующие значения: угол профиля
; коэффициент высоты головки ; коэффициент радиального зазора ;