Определяем геометрические параметры эвольвентной передаче.
Определяем минимальный коэффициент смещения:
Z5<17и Z5+Z6≥34, следовательно, передача равносмещенная,
x5=(17-Z5)/17=(17-11)/17=0,35 мм;
x6=-x5=-0,35 мм;
Определяем делительное межосевое расстояние:
а= 0,5·m·(Z5+Z6)= 0.5·6·(11+25)=108 мм;
Определяем высоту зуба:
h=m(2ha*+c*)=6(2·1+0,25)=13,5 мм;
4) Делительная высота головки зуба:
ha=m·(ha*+x);
ha5= m·(ha*+x5)= 6·(1+0,35)= 8,1 мм;
ha6=m·(ha*+x6)=6·(1-0,35)= 3,9 мм;
5) Делительная высота ножки зуба:
hf= m·(ha*+C-x);
hf5= m·(ha*+C-x5)= 6·(1+0,25-0,35)= 5,4 мм;
hf6= m·(ha*+C+x6)= 6·(1+0,25+0,35)= 9,6 мм;
Диаметр делительной окружности:
d5= m·Z5= 6·11= 66 мм;
d6= m·Z6= 6·25= 150 мм;
Диаметр основной окружности:
db5= m·Z5·cos(α)= 6·11· cos(20)= 62,05 мм;
db6= m·Z6·cos(α)= 6·25· cos(20)= 147 мм;
Диаметр окружности вершин зубьев:
da=m·Z+2m·(ha*+x);
da5=m·Z5+2m·(ha*+x5)=6∙11+2·6(1+0,35)= 82,2 мм;
da6=m·Z6+2m·(ha*+x6)=6∙25+2·6(1-0,35)= 157,8 мм;
Диаметр окружностей впадин зубьев:
df=mZ-2m(ha*+C*-x);
df5=mZ5-2m(ha*+C*-x5)=11·5-2·6(1+0,25-0,35)=55,2 мм;
df6=mZ6-2m(ha*+C*-x6)=25·5-2·6(1+0,25+0,35)=130,8 мм;
10) Делительная окружная толщина зуба:
S=0,5·π·m+2m·x·tg(α);
S5=0,5·3,14·6+2·6·0,35·tg(20)= 10,9 мм;
S6=0,5·3,14·6-2·6·0,35·tg(20)= 7,9 мм;
Делительный шаг:
P= π·m = 3,14·6=18,84 мм;
12) Основной шаг:
Pb= π·m cos(α)= 3,14·6·0,94=17,7 мм;
13) Радиус кривизны галтели
ρ=0,38m=2.28 мм;
14) Строим зубчатую передачу с масштабным коэффициентом Kl=0,00025 м/мм;
15) Проверяем коэффициент торцевого перекрытия
а) аналитический метод:
1,57б) графический метод:
где
– длина активной линии зацепления.3.2 Определение передаточного отношения планетарной ступени и подбор числа зубьев колес
Исходные данные:
nкр=150 мин-1;
nдв=1500 мин-1;
Z5=11;
Z6=25;
знак передаточного отношения привода (-)
Составляем общее передаточное отношение механизма:
Рассчитаем передаточное отношение
и через исходные данные:Из исходного уравнения определяем передаточное отношение планетарной ступени:
;Составляем формулу Виллиса для планетарной передачи:
; ;Запишем через числа зубьев передаточное отношение обращенного механизма:
;Подбираем числа зубьев:
; ;Z1+Z2=Z4-Z3;
Z1+Z2=30+30=60
Z3+Z4=85-25=60
Z1=30, Z2=30, Z3=25, Z4=85
По выбранным числам зубьев определяем размеры колес:
d=m·Z;
d1=6·40=240 мм;
d2=6·40=240 мм;
d3=6·25=150 мм;
d4=6·85=510 мм;
d5=6·11=66 мм;
d6=6·25=150 мм
Масштабный коэффициент построения Кl=0,001 м/мм;
Для построения плана скоростей редуктора определяем скорость точки А:
м/с;Строим план скоростей. Масштабный коэффициент плана скоростей
мс-1/мм;3.3 Определение частот вращения зубчатых колес аналитическим методом
n1= nдв=1500 мин-1;
n6= nкр=150 мин-1;
; мин-1; ; мин-1; мин-1;Значения частот вращения получим графическим методом:
мин-1;4 Синтез и анализ кулачкового механизма
4.1 Диаграммы движения толкателя
Исходные данные:
Максимальный подъём толкателя h=29 мм;
Фазовый рабочий угол φ=290;
Дезаксиал е=0 мм;
nкр=150 об/мин;
Z5=11;
Z6=25
Угол давления α=25;
По заданному графику V-t графическим диференцированием получим график а-t, графическим интегрированием - S-t. Базы Н1=20 мм, Н2=25 мм. Методом исключения общего параметра t получим график V-S, a-S, a-V. Масштабные коэффициенты графиков:
Ks=
м/мм;Kv=
мс-1/ммKt=
c/мм;Ka=
мс-2/мм4.2 Определение минимального радиуса кулачка
Минимальный радиус кулачка выбирается из условия выполнения угла давления. Для этого строим совмещённый график S’-V, где S’- текущее перемещение в стандартном масштабе КS’=0,0005 м/мм, V- аналог скорости.
На совмещённом графике на горизонтальных линиях откладываем аналоги скорости в масштабе КS’
x1=
ммx2=
К совмещённому графику проводим две касательные под углом давления α. Ниже точки пересечения касательных выбирается центр вращения кулачка и соединяется с началом совмещённого графика. Это и будет минимальный радиус кулачка.
R0’=R0’·KS’=40·0,0005=0,02 м;
4.3 Построение профиля кулачка
Профилирование кулачка выполняется методом обращённого движения. Для этого строим кулачок в масштабе Кl=0,00025 м/мм. Проводим окружность радиусом R0’ и окружность радиуса е. Откладываем угол φр=290. Делим его на 12 частей и через точки деления проводим оси толкателя в обращённом движении. Вдоль осей толкателя откладываем текущее перемещение толкателя от окружности R0’. Соединяя полученные точки получим центровой профиль кулачка. Радиус ролика выбираем из условия:
rp=(0,2…0,4)R0’=0,25∙40=10 мм
Минимальный радиус действительного профиля:
R0=R0’-rp=40-10=30 мм
Обкатывая ролик по центровому профилю получаем действительный профиль.
Public Sub kul()
Dim I As Integer
Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA, BET As Single
Dim R0, FIR, FI0, FII, SHAG, E As Single
Dim S(1 To 10) As Single
R0 = InputBox("ВВЕДИТЕ МИНИМАЛЬНЫЙ РАДИУС КУЛАЧКА RO")
FIR = InputBox("ВВЕДИТЕ РАБОЧИЙ УГОЛ КУЛАЧКА FIR")
FI0 = InputBox("ВВЕДИТЕ НАЧАЛЬНОЕ ЗНАЧЕНИЕ УГЛА ПОВОРОТА КУЛАЧКА FI0")
E = InputBox("ВВЕДИТЕ ДЕЗАКСИАЛ E")
For I = 1 To 10
S(I) = InputBox("ВВЕДИТЕ СТРОКУ ПЕРЕМЕЩЕНИЙ S(" & I & ")")
Next I
FIR = FIR * 0.0174532
SHAG = FIR / 10
FI0 = FI0 * 0.0174532
FII = FI0
For I = 1 To 10
dis1 = (R0 ^ 2 - E ^ 2) ^ (1 / 2)
dis2 = S(I) ^ 2 + R0 ^ 2 + 2 * S(I) * dis1
R = dis2 ^ (1 / 2)
a1 = E / R
a2 = E / R0
arksin1 = Atn(a1 / (1 - a1 ^ 2) ^ (1 / 2))
arksin2 = Atn(a1 / (1 - a2 ^ 2) ^ (1 / 2))
BETTA = FII + arksin1 - arksin2
BETTA = BETTA * 180 / 3.1415
Worksheets(1).Cells(I, 1) = R
Worksheets(1).Cells(I, 2) = BETTA
FII = FII + SHAG
Next I
End Sub
Список использованных источников
1. Машков А.А. Теория механизмов и машин. Мн., 1971.
2. Артоболевский И.И. Теория механизмов и машин. М., 1975.
3. Фролов К.В., Попов С.А., Мусатов А.К. и др. Теория механизмов и машин под ред. К.В. Фролова М., 1986.
4. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. М., 1998.