2.5 Определение уравновешивающей силы методом Жуковского
Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая
и силы инерции. Составим уравнение моментов относительно точки , считая неизвестной:Подлинность графического метода:
2.6 Определение мощностей
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где
- коэффициент - реакция во вращательной паре, - радиус цапф.Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
2.7 Определение кинетической энергии механизма
Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.
Приведенный момент инерции
3. Геометрический расчет зубчатой передачи. Проектирование планетарного механизма
3.1 Геометрический расчет равносмещенного зубчатого зацепления.
Исходные данные:
Число зубьев на шестерне
Число зубьев на колесе
Модуль
Угол профиля рейки
Коэффициент высоты головки зуба
Коэффициент радиального зазора
Суммарное число зубьев колес
Поскольку
, то проектируем равносмещенное зубчатое зацепление.Коэффициент смещение
Угол зацепления
Делительное межосевое расстояние
Начальное межосевое расстояние
Высота зуба
Высота головки зуба
Высота ножки зуба
Делительный диаметр
Основной диаметр
Диаметр вершин
Диаметр впадин
Толщина зуба по делительному диаметру
Делительный шаг
Шаг по основной окружности
Радиус галтели
Коэффициент перекрытия
Погрешность определения коэффициента зацепления:
где ab и p находим из чертежа картины зацепления.
1. Масштабный коэффициент построения картины зацепления.
3.2 Синтез планетарного редуктора
Исходные данные:
Модуль
Частота вращения вала двигателя
Частота вращения кривошипа
Числа зубьев
Номер схемы редуктора
Знак передаточного отношения –
Общее передаточное отношение редуктора
Передаточное отношение простой передачи
Передаточное отношение планетарной передачи
Формула Виллиса для планетарной передачи
5. Передаточное отношение обращенного механизма, выраженное в числах зубьев.
Представим полученное отношение в виде
6. Подбор чисел зубьев
Выбираем числа зубьев
7. Условие соосности
Условие соосности выполнено
8. Делительные диаметры
9. Угловая скорость вала двигателя
10. Линейная скорость точки A колеса z1
11. Масштабный коэффициент Kv
12. Масштабный коэффициент построения плана редуктора
3.3 Определение частот вращения аналитическим методом.
1. Определение частот вращения аналитическим методом.
откуда
Знак плюс показывает, что водило вращается в одном направлении с валом
2. Определение частот вращения графическим методом.
Масштабный коэффициент плана частот вращения
Частоты вращения, полученные графическим способом.
Определение погрешностей
Private Sub CommandButtonl_Click()
Dim zl, z2, m, ha, C, z5, z6, xl, x2, aw, a, h, hal, ha2, hfl, hf2, dl, d2, dal, da2, dBl, dB2, dfl, df2, SI, S2, P, PB, rf, q As Double zl=CDbl(TextBoxl. Value)
z2 = CDbl(TextBox2.Value)
m = CDbl(TextBox3 .Value)
ha = CDbl(TextBox4.Value)
c = CDbl(TextBox5. Value)
q = CDbl(TextBox6.Value)
ListBoxl. Clear
ListBoxl.Addltem ("Начало отсчета")
ListBoxl.Addltem ("zl=" & zl)
ListBoxl .Addltem ("z2=" & z2)
ListBoxl.Addltem ("m=" & m)
ListBoxl.Addltem ("ha*=" & ha)
ListBoxl.Addltem ("C*=" & C)
q = (q* 3.14)/180
ListBoxl.Addltem ("угол-' & q)
xl=(17-zl)/17
ListBoxl.Addltem ("xl=" & xl)
x2 = -xl
ListBoxl.Addltem ("x2=" & x2)
a = m*(zl +z2)/2
ListBoxl .Addltem ("a=" & a)
aw=a
ListBoxl .Addltem ("aw=" & aw)
h=2.25*m
ListBoxl .Addltem ("h=" & h)
ha1=m*(ha+x1)
ListBoxl .Addltem ("ha1=" &ha1)
ha2=m*(ha+x2)
ListBoxl .Addltem ("ha2=" &ha2)
hf1=m*(ha+c-x1)
ListBoxl .Addltem ("hf1=" &hf1)
hf2=m*(ha+c-x2)
ListBoxl .Addltem ("hf2=" &hf2)
d1=m*z1
ListBoxl .Addltem ("d1=" &d1)
d2=m*z2
ListBoxl .Addltem ("d2=" &d2)