Смекни!
smekni.com

Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ (стр. 4 из 12)

, (2.3)

где M1 — масса имплантируемого иона, кг.

Эта формула справедлива в довольно широком интервале масс ион-атом, поэтому именно её и следует использовать при расчётах. Формула (2.3) позволяет рассчитать средний проецированный пробег для одноатомных мишеней [22]. Для расчёта пробега в мишенях сложного химического состава, каковыми являются сплавы, можно воспользоваться статистическими методами имитационного моделирования, в частности, методом Монте-Карло [20].

В разделах 2.3.1 и 2.3.2 приведены расчётные формулы для ядерных и электронных потерь энергии ионом в веществе [22, 57]. Величина вклада ядерных и электронных потерь энергии в общие потери энергии ионом различна для разных энергетических диапазонов (рисунок 2.4).

Из анализа графика на рисунке 2.4 следует, что при низких энергиях ионов (

) их торможение за счёт ядерных потерь энергии является доминирующим. С ростом энергии имплантируемых ионов упругие потери энергии достигают максимума в точке E1 и затем начинают уменьшаться. В то же время неупругие потери энергии продолжают увеличиваться. Таким образом, в области средних энергий ионов (
) в точке E2 электронные и ядерные тормозные сечения становятся сравнимы по величине. При дальнейшем увеличении энергии ионов неупругие потери энергии ионов существенно возрастают и упругие потери можно не учитывать. В высокоэнергетической области (энергия ионов 10-13 Дж и выше) при энергиях ионов выше точки E3 заключён диапазон энергий, в котором применима квантовая теория торможения быстрых ионов Бете-Блоха [22]. Уменьшение потерь энергии после точки E3 связано с тем, что они переходят в ионизационные потери. Подъём кривой при очень высоких энергиях обусловлен релятивистской поправкой [22].

Рисунок 2.4 – Общий вид зависимости тормозных сечений электронного и ядерного торможения от энергии иона.


Потери энергии определяются в основном электронным торможением, если энергия налетающих частиц превышает Eкр:

, (2.4)

где

[57], Z1 и Z2 – зарядовые числа иона и атома мишени соответственно.

Таким образом, из анализа графика на рисунке 2.4 и из условия (2.4) следует, что в диапазоне энергий 1 – 10 кэВ (

Дж), при
необходимо учитывать как электронные, так и ядерные потери энергии ионами азота при имплантации в металлы и сплавы, а при
можно учитывать только электронные потери энергии ионом. Рассмотрим далее зависимости для расчёта этих потерь.

2.3.1 Ядерное торможение иона в материале

Если проинтегрировать энергию, передаваемую ионом атому мишени при столкновении Tn по всем возможным потерям энергии при столкновении, то получим упругие потери энергии на единицу длины пути [1, 2, 12, 21, 22, 57]:

, (2.5)

где Tmax — максимально возможная энергия, передаваемая при лобовом столкновении, Дж;dσ — дифференциальное поперечное сечение взаимодействия, м2.

Таким образом, для нахождения потерь энергии ионом при столкновении с атомами поверхностного слоя материала образца, необходимо знать энергию Tn, Tmax и сечение рассеяния dσ.

Для нахождения вышеуказанных параметров рассмотрим процесс столкновений частиц на основе классической механики. Тогда с углом рассеяния сталкивающихся частиц можно связать прицельный параметр p и классическую траекторию в процессе столкновения. Уравнения, описывающие траектории взаимодействующих частиц, значительно упрощаются, если рассматривать движение в системе центра масс (СЦМ). Рисунок 2.5 иллюстрирует положение и угловые координаты частиц при максимальном их сближении в лабораторной системе координат (ЛСК). Одна из частиц (M1) до столкновения двигалась со скоростью v, а другая (M2) – покоилась. Углы отклонения частиц после столкновения в ЛСК q1 и q2 выражаются через угол j формулами [22]:

,
, (2.6)

где α – угол отклонения иона в СЦМ при столкновении, рад.

Абсолютные величины скоростей частиц после столкновения

и
могут быть выражены через угол α формулами [22]:

,
. (2.7)

Рисунок 2.5 – Схема столкновения двух частиц в ЛСК.

- скорость иона до и после столкновения соответственно;
- скорость атома после столкновения;
- скорость центра масс; θ1, θ2 – углы отклонения в ЛСК после столкновения иона и атома соответственно; α - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц.

Тогда упругие потери энергии Tn ионом при столкновении с атомом подложки в ЛСК рассчитываются согласно (2.7) по формуле:

, (2.8)

где E – энергия иона до столкновения; параметр

Дж, определяет максимально возможную энергию, передаваемую при лобовом столкновении (когда частицы сближаются и удаляются по одной оси):

. (2.9)

Угол рассеяния α налетающей заряженной частицы в центральном силовом поле c потенциальной энергией U(r) наиболее удобно решать исходя из законов сохранения энергии

и момента импульса
:

, (2.10)

. (2.11)

где r – радиус-вектор иона, м; p- прицельный параметр, м (расстояние, на котором ион прошёл бы от атома в отсутствие силового поля);

- приведенная масса, кг;
и
- радиальная и поперечная составляющие скорости иона соответственно.

Подставим величину

из (2.11) в (2.10):

. (2.12)

Отсюда

. (2.13)

Преобразуем выражение (2.11) к виду:

, (2.14)

тогда из (2.13) и (2.14) получим

, (2.15)

и, следовательно,

. (2.16)

Рисунок 2.6 – Траектория частицы в СЦМ.

- скорость иона до и после столкновения соответственно; r – радиус-вектор иона; α - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц.

На рисунке 2.6 показана траектория движения иона в системе центра масс. Эта траектория симметрична по отношению к прямой, проведенной в ближайшую к центру точку орбиты (см. на рисунке 2.6 прямая ОА). Углы между ОА и обеими асимптотами к траектории одинаковы. Если обозначить эти углы χ0, то видно, что угол рассеяния иона в СЦМ равен:

. (2.17)

Из (2.16) следует, что

. (2.18)

Так как из (2.10) и (2.11)

,
, (2.19)

То

, (2.20)

где rmin— минимальное расстояние, на которое частица приближается к рассеивающему центру, м; vотносительная скорость сталкивающихся частиц на "бесконечном" расстоянии друг от друга,

.