Смекни!
smekni.com

Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ (стр. 6 из 12)

Формула Кишиневского. Согласно его расчетам

, (2.34)

где Zmin — меньший, aZmax больший из зарядов сталкивающихся частиц.

Формула (2.34) позволяет получить более точные результаты, так как учитывает связь между потерями энергии и прицельным параметром и учитывает различие между Z1 и Z2. Она наиболее подходит для расчёта методом Монте-Карло электронных потерь энергии ионами азота при имплантации в металлы или сплавы.

Рассчитав потери энергии по формулам (2.5) и (2.32) можно найти средний пробег и средний проецированный пробег ионов по формулам (2.2) и (2.3) в различных фазах сплавов или чистых металлах. Для расчёта потерь энергии ионами при имплантации в реальные материалы, имеющие сложный химический состав, необходимо воспользоваться соотношениями (2.8) и (2.34). Также, определив угол рассеяния α из формулы (2.21), можно по формуле (2.25) определить дифференциальное сечение рассеяния.

Полученные из формул (2.2) и (2.3) значения пробегов ионов используются для расчёта распределения примеси в твёрдом теле после имплантации.

2.4 Распределение примеси и дефектов в материале подложки в зависимости от энергии ионов азота

Вследствие статистического характера взаимодействия ионов с атомами мишени наблюдается разброс пробегов ионов. Для металлов и сплавов распределение пробегов ионов приблизительно гауссовское. Такое распределение характеризуется двумя параметрами — средним значением Rpи среднеквадратическим отклонением ΔRp(страгглингом пробега).

Для определения распределения имплантированных атомов наряду с параметрами пробега Rp и ΔRp нужно знать полную дозу имплантированных ионов Ф, м-2. Её можно получить через полный заряд всех ионов Q, Кл, который можно измерить в процессе имплантации [22]. Удельная доза имплантируемых ионов:

, (2.35)

где q— заряд иона, Кл; Q — полный заряд, Кл; А — площадь имплантации, м2.

При использовании этой формулы предполагается, что все попавшие на мишень ионы являются ионами заданного вида примеси с зарядом q и остаются в имплантируемой мишени и что устройство измерения правильно интегрирует ток пучка, а легируемая площадь А корректно определена.

Однако, приведенные выше предположения не всегда достижимы в существующих системах измерения дозы. Поэтому измерение дозы имплантации всегда проводится с той или иной погрешностью, которая обусловлена следующими факторами: неоднородностью приходящего на мишень ионного пучка по зарядовому и массовому составу, недостатками измерения цилиндром Фарадея и блоком измерения дозы.

Основную погрешность в измерении дозы имплантации вносит нейтральная компонента пучка, которая появляется в результате перезарядки ионов в области после ускорения. Этот происходит при столкновении ионного потока с потоком выбитых ими электронов с поверхности материала подложки. Нейтральные атомы не только нарушают корреляцию между интегрируемым током и дозой, но для систем с электростатическим сканированием приводят к значительной неоднородности дозы имплантации.

Одним из основных процессов, сопровождающих ионное облучение твёрдого тела является образование в нём нарушений кристаллической структуры из-за передачи энергии иона атомам и электронам вещества. Определяющую роль при образовании дефектов играют ядерные взаимодействия. Если энергия, передаваемая ионом атому решётки (упругие потери), превышает энергию связи атома в кристаллической решётке, то последний выбивается из своего положения и переходит в междоузлие. Таким образом возникает точечный дефект – вакансия-межузельный атом (пара Френкеля). Для железа и сплавов на его основе энергия связи составляет 40 эВ. Если энергия, переданная первично смещённому атому, превышает энергию связи в несколько раз и более, то атом, в свою очередь может сместить другие атомы, те – следующие и т.д. Так образовываются каскады смещений. Напряжения, возникающие при образовании вакансии являются растягивающими, а имплантированный азот создаёт напряжения сжатия, то есть противоположные по знаку. Таким образом, для расчёта остаточных концентрационных напряжений, кроме концентрации ионов, необходимо учитывать и концентрацию вакансий.

Концентрация ионов Сi(х) как функция расстояния от поверхности выражается соотношением (2.36), а концентрация вакансий Сv(х) соотношением (2.37) [1 – 3, 12, 21, 57]:

, (2.36)

, (2.37)

где х — расстояние от поверхности металла (глубина проникновения иона в материал), м;

, Δx, kd – характеристики распределения вакансий [3].

Как показано в работе [21] в режиме насыщения максимальная концентрация имплантированной примеси Nmax определяется выражением:

, (2.38)

где N- плотность атомов обрабатываемого материала, м-3, S - коэффициент распыления.

Коэффициент распыления равен числу атомов, выбиваемых одним падающим ионом и рассчитывается по формуле:

, (2.39)

где as – безразмерный коэффициент, характеризующий эффективность передачи энергии, который зависит от отношения масс взаимодействующих частиц; Sn- сечение упругого торможения при начальной энергии иона E0, Дж; Eb – энергия связи атомов на поверхности обрабатываемого материала, Дж. Таким образом, теоретически величина предельной концентрации примеси не зависит от дозы облучения, определяясь плотностью атомов обрабатываемого материала и коэффициентом распыления его ионами имплантируемой примеси. Поскольку коэффициент распыления является функцией порядковых номеров и массовых чисел иона и обрабатываемого материала, а также энергии иона, то величина Nmax будет существенно зависеть от этих параметров. Поэтому изменяя энергию иона можно менять максимальную концентрацию имплантированной примеси. Также и для различных материалов подложки эта величина будет разной.

Знание распределения примеси и точечных дефектов в материале подложки после имплантации необходимо для нахождения остаточных концентрационных напряжений.

2.5 Остаточные концентрационные напряжения

Как правило, глубина модифицированного слоя значительно меньше размеров легированной поверхности изделия. Тогда имплантированный материал можно схематизировать как полупространство. Предполагаем, что до обработки поверхность была свободна от напряжений, а начальные концентрации дефектов и примесей равнялись нулю. При наличии примесей и дефектов поверхностный слой растягивается или сжимается и затем остается в таком состоянии. Напряжения в поверхностном слое (рисунок 2.7) описываются следующим уравнением [34]:

(2.40)

где σxx, σyy, σzz – нормальные напряжения, действующие вдоль координатных осей,

; Сi(х) – концентрация ионов, м-3; Сv(х) – концентрация вакансий, м-3; μ– модуль упругости материала подложки,
; Ω – атомный объём кристаллической решётки материала подложки, м3; δV – релаксационный объём точечного дефекта.

Рисунок 2.7 – Остаточные концентрационные напряжения в поверхностном слое материала подложки после имплантации.

Остаточные концентрационные напряжения определяют свойства материала после имплантации. Для расчета концентрационных напряжений по соотношению (2.40) необходимо определить распределение концентраций примесных атомов Ci(x) и вакансий Cv(x). Для их расчёта необходимо определить пробеги ионов, которые рассчитываются с помощью метода Монте-Карло (см. раздел 3.1). Использование этого метода позволяет учесть вероятностный характер физических процессов, протекающих при ионной имплантации в мишенях сложного химического состава, – таких как металлы и сплавы.

3. Методики расчёта основных параметров физических процессов, происходящих при ионной имплантации

Методики расчёта основных параметров физических процессов, происходящих при ионной имплантации основаны на следующих допущениях:

1) при прохождении иона через вещество не учитывается изменение его заряда и массы;

2) мишень считается аморфной (не учитывается кристаллическая решетка);

3) потери энергии ионом определяются только упругими и неупругими столкновениями, причём оба вклада считаются независимыми в процесс торможения;

4) ион останавливается, когда его энергия меньше потенциальной энергии взаимодействия его с атомом решётки перед столкновением;

5) изменение химического состава материала в процессе имплантации не учитывается.

Допущение 1 основано на том, что после имплантации азот находится в атомарном состоянии в материале подложки. Заряд и масса имплантируемых ионов меняются не только в процессе столкновений с атомами решётки, но и при подлёте к поверхности материала за счёт эффекта нейтрализации. Учёт этих эффектов сильно осложняет расчёты, но, как показано в работах [21, 22], незначительно повлияет на их точность. Допущение 2 соответствует немонокристаллическим мишеням, таким как металлы и сплавы.