Сили та моменти сил інерції замінюємо рівнодіючими, які за величиною рівні силам інерції і прикладені на відстані
та :З урахуванням масштабного коефіціента μ=0,0025 знаходимо плечі рівнодійних на кресленні:
Складаємо рівняння моментів сил, що діють окремо на ланки 2 і 3 відносно точки В і визначаємо тангенціальні складові реакцій.
Для ланки 2:
,де h2 = 0,117 м,
АВ = 0,291 м,
.І звідси :
Для ланки 3:
де О2В = 0,29 м,
h3 = 0,147 м,
, .І звідси :
Запишеио векторне рівняння рівноваги сил, що діють на групу Ассура, складену з ланок 2 і 3. .Будуємо план сил відповідно до цього рівняння і визначаємо величини та напрямки реакцій
(див. арк. 2). Знайдемо довжини векторів сил на кресленні з масштабним коефіціентом μF=0,007Н/мм.Визначаємо з креслення :
Розглянемо рух вхідної ланки. Вхідною ланкою механізму є кривошип 1, який здійснює обертальний рух. Привод у рух цієї ланки здійснюється від електродвигуна через планетарний редуктор і відкриту зубчату передачу коліс 4 і 5. Ланка 1 виконується разом з колесом 5, або жорстко з нею зв’зуються. На зубчате колесо з боку спряженого колеса 4 діє сила, яку називають зрівноважуючою, або рушійною. Накреслимо ведучу ланку разом з колесом 5 (див. аркуш 2).
Число зубів колеса 5 Z5 = 35, колеса 4 Z4 = 16, а модуль зубчатих колес m = 8 мм. З цих даних знайдемо радіусb колес 5і 4:
r5 = m×Z5 / 2 = 140 мм.
r4 = m×Z4 / 2 = 64 мм.
Зрівноважуючу силу Рзр Прикладаємо в полюсі зачеплення коліс і 5 і направимо по лінії зачепленя, яка складає з дотичною до початкових кіл кут приблизно aw = 24°.
В точці А кривошипа прикладаємо силу реакції R12з боку ланки 2. Величину та напрямок цієї реакції визначаємо з рівності
.Запишемо векторне рівняння рівноваги сил, що діють на вхідну ланку:
.Будуємо силовий трикутник відповідно векторного рівняння, з якого візначаємо сили Рзр і R01 ( масштабний коефіціент виберемо рівним μF=77Н/мм ). Тоді
З креслення визначаємо:
Fзр = 41,78*77=3217 Н,
R01 = 63,44*77=4484,88 Н.
13 ВИЗНАЧЕННЯ ЗРІВНОВАЖУЮЧОЇ СИЛИ МЕТОДОМ
«ВАЖІЛЯ» ЖУКОВСЬКОГО
Побудуємо план швидкостей, повернутий на 900 проти руху кривошипа (див. арк. 2)
В центрах ваги прикладаємо сили ваги, в точках прикладання рівнодіючих сил інерції прикладаємо ці сили, а в точці р під кутом 240 до нормалі до ррVзрівноважуючу силу Рзр. Точки прикладання рівнодіючих сил інерції поділяють відповідні відрізки швидкостей у тій же пропорції, у якій поділяють ланки точки Кі.
Згідно теореми Жуковського розглядувана система сил перебуває у стані рівноваги. Складаємо рівняння моментів сил, діючих на ”важіль”, відносно полюсу рV.
G2·116,6 + G3·50.45 + G4·101,26 + G5·101.63 + Р2·56,33+Р3·75,75+Р4·104,57+P5·101.63 - Pзр·173,58 = 0;
Звідси
Pзр=3104 Н
Похибка у визначенні зрівноважуючої сили:
Δ=
·100%=3,5%14 СИНТЕЗ ЗУБЧАТОГО ЗАЧЕПЛЕННЯ
Розрахунок розмірів коліс для нерівнозміщеного зачеплення
Досліджуємо зачеплення коліс 4 і 5 привода. Для розрахунків приймаємо Z4=16, Z5=35 та модуль m=8мм (див. бланк задання).Визначемо геометричні розміри зубчастих коліс. Визначемо спочатку параметри зачеплення, які не залежать від зміщення.
Крок зуба по ділильному колу:
Діаметри ділильних кіл:
Діаметри основних кіл:
Визначаємо кут зачеплення:
Визначаємо значення кута з таблиці інвалют:
Діаметри початкових кіл:
Звідси знаходимо міжосьову відстань:
Коефіціент сприйманого зміщення міжосьової відстані
Коефіціент вирівнювального зміщення:
Виличина заходу зубців:
Висота зуба:
Діаметри кіл западин:
Діаметри кіл головок:
Товщіна зуба по ділильному колу
Якісні показники зачеплення
Визначення коефіціента перекриття
Коефіціент перекриття, по якому можна судити про плавність передачі:
Коефіціент перекриття показує кількість зубців, що одночасно знаходяться в зачепленні в часі. Коефіціент 1,157 означає, що 15,7% часу зачеплення здійснюється двома парами зубців, а 84,3% часу зачеплення – однією парою зубців.
Визначання коефіціент питомого ковзання
Коефіцієнти питомого ковзання ν4 і ν5 , по судять про відносний знос профілів, визначаємо за формулами:
де АВ – довжина теоретичної лінії зачеплення, мм; Х – поточні значення координати точки зачеплення, виміряне від початкової точки А колеса 4 теоретичної лінії зачеплення, або, інакше, радіус кривизни евольвенти колеса 4, а АВ-Х – радіус кривизни евольвенти колеса 5.
Довжина теоретичної лінії зачеплення:
АВ=аw·sinαw=189,14·sin26,580=84.63мм
Координату Х приймаємо через кожну 0,1·АВ. Значення коефіціентів питомого ковзання заносимо в таблицю
хАВ | ν4 | ν5 |
0 | -∞ | 1,000 |
0,1 | -3,500 | 0,778 |
0,2 | -1,000 | 0,500 |
0,3 | -0,167 | 0,143 |
0,4 | 0,250 | -0,333 |
0,5 | 0,500 | -1,000 |
0,6 | 0,667 | -2,000 |
0,7 | 0,786 | -3,667 |
0,8 | 0,875 | -7,000 |
0,9 | 0,944 | -17,000 |
1 | 1,000 | -∞ |
Визначення умови рівнозношенності.
Якщо точка контакту буде на початку практичної лінії зачеплення, то
Максимальний коефіціент питомого ковзання колеса 4 на ніжки зуба буде
Якщо точка контакта буде в кінці практичної лінії зачеплення, то
Умова рівнозношеності:
Але -1,192 ≠ -1,557, тому умова рівнозношеності не виконується і колесо 5 буде зношуватись швидше.
15 СИНТЕЗ ПЛАНЕТАРНОЇ ПЕРЕДАЧІ
Визначення передаточного відношення планетарної передачі
Привод механізму парової машини складається з планетарного редуктора і зовнішньої зубчастої передачі коліс 4 і 5. Число обертів ротора двигуна nдв=1500 об/хв., а число обертів вала колеса 5, тобто вала кривошипа nкр=400об/хв.