Таким образом, подсчитаем момент на валу червяка:
(95)5 Расчет контактной пары
Зададимся параметрами для нижней пружины контактной пары. Эта пружина является плоской.
Ширина пружины: b=5мм;
Контактное усилие: р=5Н;
Прогиб пружины: l=1мм;
Высота пружины: h=0,2мм;
Рис.6
В качестве материала для контактной пары используем латунь: ЛАЖ Мц 66-6-3-2 (по ГОСТ 11711-72) предел прочности: sB=705Н/мм2=705 МПа.
Модуль упругости: E=10,3
Н/мм2.Допускаемое напряжение на изгиб: [s]и=sB/k;
k- запас коэффициента прочности. Для пружин с малым радиусом изгиба k=3-4
Пусть k=3 => [s]и=235 Н/мм2.
Выберем ширину пружины: b=5мм Для большинства пружин отношение b/h=m находится в пределах 10-50. Пусть примем m=10, тогда толщина пружины: h=0,5мм
Длину пружины lопрелелим из уравнения жесткости:
(96) [1, с.342](97)l=22 мм.
Условие прочности пружины будет выполняться, если pmax>p (p=0,4 H).
Максимальную допусимую силу, деформирующую пружину pmax найдем уравнения прочности:
(98)Момент трения, возникший при скольжении нижней пружины по диску:
Мтр=RfD,(99)
где R- радиус диска (Принимаем R=20 мм),
f - коэффициент трения между материалом диска и мотериалом нижней пружины контактной пары (в нашем случае это сталь с f=0,15), т.о. получаем:
Мтр=0,3 Hмм.
Т.к. в нашем механизме две контактные пары, то общий момент трения, создаваемый контактными парами:
Мтр2=2 Мтр=0,6 Hмм.
Рассчитаем жесткость пружины контактной пары по формуле:
(100)k=0,0967
Н/мм6 Расчет валов и опор
6.1 Расчет вторичного вала
Рис.7 Силовая схема вала
На рис.10 POX, POY - составляющие нормальной реакции кулачка;
PAX, PY, PBX, PBY – составляющие реакции опор А и В.
Мкр - крутящий момент на валу, Мкр=19,26 Нмм.
Произведем расчет вала на кручение и изгиб.
Проекция сил на плоскость YOZ :
(101)POY=Q12=0,53 H,
RBY=(a+b) POY/b(102)
RBY=0,759 H
RAY= POY- RBY,(103)
RAY=-0,229 H.
В плоскости XOY:
(104)POX=T21=0,2059 H,
RBX=0,3088 H
RAX= POX- RBX,(105)
RAX=-0,10295 H.
Реакция опор:
(106) (107)Максимальный изгибающий момент в плоскости YOZ:
Ми BY=POXa,(109)
Ми BY=26,04 Нмм,
Максимальный изгибающий момент в плоскости XOY:
Ми BX=POXa,(109)
Ми BX=10,11 Нмм., тогда
Ми B=
(110)Ми B=27,93 Hм.
Расчет на прочность вала ведется из условий прочности на кручение по заданному крутящему моменту.
Из этих условий выбирают диаметр вала:
(111)В качестве допускаемого напряжения принимают пониженное допускаемое напряжение на кручение:[t]=20-30 МПа
Крутящий момент вала определяется как:
Мкр= Мкул+ Мтр.к+ Ми,
где Мкул - момент кулачка, М=19,26 Нмм.,
Мтр.к. - момент трения контактной пары, Мтр.к.=0,3 Нмм,
Ми - момент червячной пары, Ми=1,028 Нмм.
Тогда: Мкр=20,588 Нмм.
d=1,602 мм.
По ГОСТ 6636-69 принимаем диаметр вала равным 3 мм.
Расчет вала на жесткость проводим для ограничения деформаций изгиба и кручения.
Если дан прогиб
(112)где l– максимальное расстояние между опорами вала, l=60 мм, то
(113)6.2 Расчет первичного вала на прочность
Расчет первичного вала ведется из условий прочности на кручение по заданному крутящему моменту
Из этих условий выбирают диаметр вала:
В качестве допускаемого напряжения принимаем пониженное допускаемое напряжение на кручение: :[t]=20-30 МПа
Крутящий момент Мк вала определяется как:
Мк=Ми+Мх.к.,(114)
где Ми –момент червяка, Ми=1,028 Нмм.
Мх.к. – момент на храповом колесе.
Мх.к.=19,26 Нмм
d=1,594 мм.
По ГОСТ 6636-69 принимаем диаметр вала, равным 4,5 мм.
d=4,5 мм.
6.3 Выбор и расчет шарикоподшипников
Выберем для выходного вала по ГОСТ 8338-75 шариковые радиальные однорядные подшипники сверхлегкой серии диаметров 9 следующих типов:
Для правой опоры - 1000098 со следующими параметрам:
— внутренний диаметр d=8 мм.
— наружный диаметр D=19 мм.
— ширина колец b=6 мм.
— диаметр шариков dw=3 мм.
— статическая грузоподъемность С0=885 Н.
Для левой опоры - 1000093 со следующими параметрам:
1. внутренний диаметр d=3мм;
2. наружный диаметр D=8мм;
3. ширину колес b=3 мм;
4. диаметр шариков dw=1,59 мм;
5. число шариков z=6.
Т.к. вал вращается со скоростью 1 оборот за 233 с, следовательно достаточно провести расчет на статическую грузоподъемность:
C0=fSP0,(115)
где fS - коэффициент надежности при статическом нагружении, fS=1
P0 - эквивалентная статическая нагрузка.
C0=P0
Рассчитаем эквивалентную статическую нагрузку:
P01=X0Fr+Y0FA,(116)
P02=Fr,(117)
Р0 определяется как наибольшая из равенств Р01 и Р02, где:
X0 - коэффициент радиальной статической нагрузки,
Y0 - коэффициент осевой статической нагрузки,
Fr- радиальная сила, действующая на подшипник,
FA - осевая сила, действующая на подшипник.
X0=0,5;Y0=0,43;
Fr=Q21=0,53 H;
FA=T21=1,426 H.
Р01=0,878 H;
Р02=0,53 H.
Следовательно, Р0=0,878 Н,
Тогда С0= Р0=0,878 Н.
Из справочника конструктора-машиностроителя [5] [С0]=196 Н для данного подшипника. Таким образом, С0<[ С0].
Как видно, статическая нагрузка не превышает статической грузоподъемности, из чего делаем вывод о том, что подшипники выбраны верно.
Выводы
1.Конструкция спроектированного механизма с параметрами, соответствующими условиям геометрических расчетов, обеспечивает нормальную работу механизма в целом.
2.Передаточное отношение червячной передачи j=0,01107 обеспечивает удовлетворение требованием кинематики работы кулачкового и храпового механизмов.
3.Приведенные в записке расчеты усилий, моментов, действующих на элементы механизмов, а также расчеты напряжений деталей в критических сечениях, указывают на работоспособность спроектированного механизма с точки зрения динамики.
Список используемой литературы
1. Первицкий Ю.Д. Расчет и конструирование точных механизмов. -Л.: «Машиностроение». 1976. —-- 456 с.
2. Вопилкин Е.А. Расчет и конструирование механизмов, приборов и систем. - М.: Высшая Школа. 1980.-463с.
3. Тищенко О.Ф. и др. Элементы приборных устройств. Курсовое проектирование. В 2х частях. Под ред. Тищенко О.Ф. - М.: Высшая Школа. 1978. 41 -328 с. и 42 -232 с.
4. Красковский Е.А., Дружинин Ю.А. и др. Расчет и конструирование механизмов приборов и вычислительных систем –М.: Высшая Школа. 1983.-431с.
5. Андреев В.И. Справочник конструктора-машиностроителя – М.: «Машиностроение». 1978.Т1,2,3 – 728с., - 559с., - 557с.
6. Машиностроительные материалы (краткий справочник) / под ред. Раскатова В.М. – М.: «Машиностроение» 1980. –511с.
7. Заплетохин В.А. Конструирование деталей механических устройств. - Л.: «Машиностроение». 1990.-672с.
8. Подшипники качения: Справочник-каталог/ Под ред. В.Н. Нарышкина и Р.В. Коросташевского. -М.: Машиностроение, 1984. -280 с.
9. ГОСТ 2.703-68 Правила выполнения кинематических схем.
10. С.А. Попов, Г.А. Тимофеев Курсовое проектирование по теории механизмов и механике машин. – М.: Высшая школа.2002.-411с.
11. Под редакцией О.А. Ряховского. Детали машин. Том-8. М.: Издательство МГТУ имени Н.Э. Баумана. 2002.-543с.
Заключение
Данная пояснительная записка дает достаточно полное представление о конструкции, принципе действия, а также о методике расчета основных узлов программного механизма. В результате проделанных вычислений были рассчитаны: кулачек с профилем спирали Архимеда с ходом толкателя 5 мм минимальным и максимальным радиусами 18 и 23 мм соответственно; пружина цилиндрическая с диаметром проволоки 0,9 мм числом витков рабочих и опорных 4 и 2 соответственно; толкатель с диаметром 3,1 мм; храповой механизм с наружным диаметром 42,3 мм, числом зубьев 72 и модулем 0,64; стопорная и толкающая собачки с длинной 25 мм шириной 1,5 мм; червячная передача с модулем 0,3, числом зубьев червячного колеса 90 и числом заходов червяка равным 1; контактная пара а также первичный и вторичный валы. Расчет велся на основе соответствующей литературы, а также с активным применением вычислительной техники.