Приемные фильтры, работающие, как правило, в режиме полнопоточной фильтрации, предотвращают попадание в насос крупных частиц, в остальные элементы гидросистемы – более мелких частиц, являющихся продуктами разрушения частиц в насосе или других узлах гидропривода. По рекомендациям [18] выбираем фильтр приемный (сетчатый) по ОСТ 2С41-2-80, монтирующийся на нижнем конце всасывающей трубы насоса. Фильтры устанавливаем на всасывающей и сливной магистрали.
4.2.2 Рычаг зажима шатунных шеек
Расчет силовых параметров (рис. 3).
В качестве исходных данных принимаем усилие обкатывания шатунной шейки Р3=6800 Н.
Рис. 3 - Расчетная схема
Используя формулу (54), имеем:
,где l1 и l2 – плечи рычага, мм; принимаем l1=235 мм и l2=205 мм.
(Н).Реакция в опоре В:
, (76) (кН).Диаметр опоры из расчета на смятие [5]:
, (77) , мм.Принимается, из соображений унификаций, d=30 мм.
Перемещение силового привода по формуле (66):
,где Sp – перемещение в точках приложения силы P, мм; конструктивно принимается перемещение рычага в зоне зажима Sp=74 мм.
(мм).Расчет на изгиб рычага шатунных шеек
Ширина рычага конструктивно принимается b=15 мм. В связи с тем, что рычаг в сечении силового привода представляет собой прямоугольник малой площади, требуется расчет на поперечный изгиб. Для упрощения расчетов представим выступающую часть рычага длиной 70 мм в виде консольной балки, испытывающей основную нагрузку. Опасным сечением тогда является жесткая заделка, что не противоречит реальной схеме нагружения, где опасным сечением является галтель – плавный переход выступающей части к основному телу рычага.
Изгибающий момент в опасном сечении рассчитывается по формуле (38):
, (Н∙мм).Осевой момент сопротивления сечения вычисляем по формуле:
, (78)где b – ширина сечения, мм; b=15 мм;
h – высота сечения, мм; конструктивно принимается h=60 мм.
(мм3).Расчетное напряжение, возникающее в сечении балки (рис. 4):
, (79) (МПа).Рис. 4 - Расчетная схема
Условие прочности:
, (80)где [σ] – допустимое напряжение на изгиб, МПа; для Ст.3 [σ]=110 МПа.
Так как условие прочности 110 МПа > 51,2 МПа выполнено, рычаг в расчетном сечении является прочным. В качестве конструктивного материала принимаем Ст.3 ГОСТ 380-50.
Расчет силового гидроцилиндра
Исходные данные:
конструкция – двухсторонний, не симметричный;
рабочая сила – F=6590 Н;
скорость прямого хода – V=1 м/мин = 0,016 м/с;
длина хода – 85 мм.
В качестве рабочей жидкости для гидропривода всей системы выбрано масло ИГП-18, кинематическая вязкость ν=18,5 сСт.
Рабочее давление в напорной полости гидроцилиндра рассчитаем по формуле (67):
,где D – диаметр поршня цилиндра, мм; конструктивно по ГОСТ 6540-68 принимается стандартный D=40 мм.
(МПа).Диаметр штока по формуле (68):
, (мм).По ряду стандартных размеров принимаем d=22 мм ГОСТ 6540-68.
Усилие, развиваемое гидроцилиндром при обратном ходе по формуле (69):
, (кН).Расход масла определяется по формуле (70):
, (л/с) = 1,2 л/мин.Используя формулу (71), определяем скорость штока при обратном ходе:
, (м/с) = 1,36 м/мин.Выбор конструкции и типа уплотнений поршня и штока гидроцилиндра.
Конструкция и тип уплотнений поршня и штока гидроцилиндра принимается аналогично гидроцилиндру в рычаге коренных шеек - кольцо резиновое уплотнительное круглого сечения. Основные размеры колец по ГОСТ 6969-54:
- уплотнения поршня D=40 мм, d=36 мм;
- уплотнения штока D=26 мм, d=22 мм, Н=3 мм.
Расчет корпуса гидроцилиндра.
Внутренний диаметр расточки корпуса соответствует диаметру поршня и принимается dк=40 мм.
Используя формулу (72), имеем:
, (мм).Для обеспечения жесткости гидроцилиндра принимаем толщину стенки δ=4 мм.
Расчет потерь давления в трубопроводе.
Безразмерное число Рейнольда по формуле (73):
,где d – внутренний диаметр трубопровода, d=4,6 мм.
.Поскольку Rе меньше критической величины [Rе]=2100, поток масла в трубопроводе ламинарный, поэтому потери давления определяем по формуле (74):
,где d – внутренний диаметр трубопровода, d=4,6 мм;
L – длина трубопровода, мм; L=2 м.
(МПа).Так как потери слишком малы, далее их можно не учитывать.
Наружный диаметр корпуса считаем по формуле (75):
D=d+2δ,
где d – внутренний диаметр корпуса, d=40 мм;
δ – толщина стенки гидроцилиндра, δ=4 мм.
D=40+2×4=48 (мм).
Принимаем D=48 мм.
Корпус гидроцилиндра изготавливается из стальных труб бесшовных горячекатаных по ГОСТ 8734-75.
Для крепления гидроцилиндра из расчета на смятие определяем диаметр проушины:
, (81)где [δ] – допускаемое напряжение для опоры скольжения, [δ]≈20 МПа.
(мм).Принимаем диаметр проушины D=15 мм.
4.2.3 Обоснование самоустановки накатных роликовых головок
При применении обкатывающих роликов с прямолинейной образующей необходима их тщательная установка и трудоемкая выверка на параллельность образующих заготовки и ролика. Неточная установка или нарушение ее в процессе работы под нагрузкой в результате деформации в системе станок – приспособление – инструмент - деталь приводят к образованию недоброкачественной поверхности. С целью устранения необходимости тщательной выверки предлагается применить схему с самоустановкой ролика, автоматически устраняющей перекосы [26]. Под действием момента, возникающего при перекосах, ролик, имеющий свободу поворота вокруг оси, перпендикулярной к линии контакта его с заготовкой, поворачивается до восстановления равномерного контакта по всей длине образующей. Свободный поворот реализуется с помощью упорного подшипника, который необходимо рассчитать на статическую грузоподъемность.
Эквивалентная статическая нагрузка на подшипник [1]:
Рэ = Fr, (82)
где Fr – радиальная нагрузка на подшипник, равная усилию обкатывания, Fr=7250 Н.
Требуемая статическая грузоподъемность:
С = f × Рэ, (83)
где f – коэффициент надежности, f = 2.
С = 2×7250 (Н).
Принимаем для эксплуатации шариковый упорный одинарный подшипник 8104, статическая грузоподъемность которого С = 21600 н.
Действительная долговечность подшипника рассчитаем по формуле:
, (84) (млн.об).Долговечность подшипника в часах по формуле:
, (85) (тыс.ч).4.2.4 Выбор устройств, обеспечивающих регулирование давления