Работоспособность резинометаллических подшипников турбобура в абразивной среде в различных нефтяных районах страны колеблется в пределах 50—150 ч. Этим временем определяется межремонтный срок работы турбобура. Сравнительно высокая работоспособность резинометаллических подшипников турбобура объясняется тем, что твердые частицы, находящиеся в промывочной жидкости, попадая в зазор между эластичной облицовкой подпятника и стальной пятой, вдавливаются в резиновую поверхность, вследствие этого сила прижатия твердых частиц к стальному диску определяется упругостью резины и не зависит от удельного давления между металлической и резиновой поверхностями. Износ таких трущихся поверхностей в 4 —6 раз ниже, чем при работе двух твердых поверхностей, находящихся в абразивной среде.
Эластичная обкладка подпятников осевой опоры турбобура позволяет равномерно распределять осевую нагрузку по ступеням в пределах 0,5 — 1,0 МПа. Коэффициент трения при промывке водой в резинометаллической опоре составляет 0,04 — 0,10, в глинистом растворе — 0,06 — 0,16.
Осевая опора качения представляет собой радиально - упорный многорядный бессепараторный шарикоподшипник. Одна ступень подшипника состоит из наружного и внутреннего 2 рабочих колец, между парами которых размещается шарик 3. Расстояние между рабочими кольцами определяется размерами распорных колец — наружного 4 и внутреннего 5. От попадания крупных абразивных частиц подшипник защищен сальником. Ввиду того, что бессепараторные подшипники работают в абразивной среде, большое влияние на их работоспособность оказывает правильная приработка опоры.
Наряду с гидравлическими в бурении используют и электрические машины — электробуры.
Электробур — это электрическая забойная машина, своеобразный электродвигатель, смонтированный в трубном корпусе малого диаметра и предназначенный для привода долота на забое скважины.
Современный электробур представляет собой, как правило, асинхронный маслонаполненный двигатель с короткозамкнутым ротором.
Конструкция промышленного электробура была разработана в СССР в 1937 — 1940 гг. группой инженеров (А.П. Островский, Н.В. Александров, Ф.Н. Фоменко, А.Л. Ильский, Н.Г. Григорян и др.). Последующие опытно-конструкторские работы позволили значительно модернизировать электробур по сравнению с первыми образцами: была создана безредукторная машина, мощность на валу электробура была увеличена в 2 — 3 раза (от 70 до 120 — 230 кВт) и наряду с этим уменьшен наружный диаметр. Серийное производство электробуров в СССР было налажено с 1956 г.
В настоящее время в ряде районов страны этим способом ежегодно бурят 200 — 250 тыс. м пород. Хотя указанный объем многократно уступает объему турбинного бурения в нашей стране, принципиальная схема подачи электрической энергии к забою скважины и использование погружного электрического двигателя для привода долота имеют неоспоримые преимущества. Однако конструктивные трудности, невысокие эксплуатационно-технические показатели и большая стоимость машины на данном этапе пока сдерживают применение этого вида техники в бурении.
Размерный ряд электробуров предусматривает их выпуск с наружными диаметрами корпуса 164, 170, 185, 215, 240, 250 и 290 мм. Более распространен электробур диаметром 170 мм. В обозначении электробура первое число — его наружный диаметр, второе — число полюсов обмотки статора (например, Э215-10). Могут добавляться буквы «М», обозначающая модернизированную модель, и «Р» — для редукторных электробуров. Обозначение электродвигателя содержит сведения о наружном диаметре корпуса, общей длине магнитопровода с длиной немагнитопроводных пакетов и о числе полюсов. Например, маркировка МАП1-17-658/6 расшифровывается следующим образом: МАП — мотор асинхронный погружной; 1 — для электробура; 17 — наружный диаметр корпуса в см; 658 — общая длина магнитопровода и немагнитных пакетов статора в см; 6 — число полюсов.
Выпускаемый промышленностью электробур включает трехфазный асинхронный маслонаполненный двигатель А и маслонаполненный шпиндель Б на подшипниках качения.
В трубном корпусе электробура размещены пакеты магнитопроводной стали статора б; они разделены пакетами немагнитопроводной стали в местах расположения радиальных шариковых опор ротора. Пакеты ротора 7 с алюминиевой обмоткой насажены на полом валу 5 двигателя. Ротор расположен в статоре с зазором 0,5 — 0,6 мм на сторону.
7. Конструкция и особенности эксплуатации винтовых забойных
двигателей
Начиная с 1940-х годов в СССР помимо ротора основным техническим средством для бурения нефтяных и газовых скважин являлся многоступенчатый турбобур.
Благодаря широкому распространению турбинного способа бурения ускоренно разбуривались нефтегазоносные площади Урало-Поволжья и Западной Сибири, были получены высокие темпы роста добычи нефти и газа.
Однако с увеличением средних глубин скважин и по мере совершенствования породоразрушающего инструмента и технологии роторного способа бурения, в отечественной нефтяной промышленности с каждым годом росла тенденция Отставания технико-экономических показателей бурения.
Несмотря на определенное совершенствование техники и технологии турбинного бурения, показатели работы долот на протяжении ряда лет улучшались весьма незначительно. Хотя в 1970-е годы началось разбуривание месторождений Западной Сибири, отличающихся благоприятными геологическими условиями (мягкие породы, относительно неглубокие скважины), средняя проходка за рейс по эксплуатационному бурению была в 3 — 4 раза меньше аналогичного показателя в нефтяной промышленности США. Так, в 1981 — 1982 гг. средняя проходка за долбление в США составила 350 м, в то время как в СССР этот показатель не превышал 90 м.
Перед специалистами и организаторами бурения в нашей стране встал вопрос о создании погружной техники для низкооборотного бурения, так как, несмотря на определенные успехи роторного бурения глубоких скважин в ряде районов (Северный Кавказ, Западная Украина и др.), технически, экономически и психологически нефтяная промышленность не была готова к развитию роторного бурения. За многие годы государственной поддержки турбинного бурения техника роторного бурения существенно отстала от мирового уровня, не имелось бурильных труб и буровых установок высокого технического уровня.
Таким образом, определился доминирующий способ бурения на базе низкооборотных забойных двигателей.
Решение проблемы создания забойного гидравлического двигателя с характеристиками, отвечающими требованиям новых конструкций долот, было найдено в переходе от динамических машин, какими являются турбобуры, к объемным.
Первым работоспособным, нашедшим промышленное применение оказался гидродвигатель, представляющий собой обращенный насос Муано, относящийся к планетарно-роторному типу гидромашин.
Работы по созданию опытных образцов винтовых забойных двигателей (ВЗД) начались в США и СССР в середине 1960-х годов.
Американские специалисты фирмы разработали ВЗД (на Западе их называют РДМ) для наклонно направленного бурения как альтернативу турбобурам, а в нашей стране, родине турбинного бурения, — как техническое средство для привода низкооборотных долот.
Многолетние поисковые научно-исследовательские работы во ВНИИБТ по совершенствованию забойных гидравлических двигателей привели в 1966 г. к появлению предложенного М.Т. Гусманом, С.С. Никомаровым, Н.Д. Деркачем, Ю.В. Захаровым и В.Н. Меньшениным нового типа ВЗД, рабочие органы которого впервые в мировой практике выполнены на базе многозаходного винтового героторного механизма, выполняющего функцию планетарного редуктора.
В последующие годы во ВНИИБТ и его Пермском филиале Д.Ф. Балденко, Ю.В. Вадецким, М.Т. Гусманом, Ю.В. Захаровым, А.М. Кочневым, С.С. Никомаровым и другими исследователями были созданы основы теории рабочего процесса, конструирования и технологии изготовления, разработана технология бурения винтовыми двигателями.
В результате многолетнего опыта бурения с использованием гидравлических забойных двигателей (турбобуров и ВЗД) сложился комплекс технических требований к современному забойному двигателю.
1. Характеристики двигателя должны иметь высокий уровень крутящего момента (3 кН-м и более) для долот диаметрами 215 — 243 мм; частоту вращения выходного вала в диапазоне 100 — 200 мин для шарошечных долот и 500 — 800 мин для алмазных долот; высокий КПД двигателя для эффективного использования гидравлической мощности насосов; пропорциональную зависимость между расходом бурового раствора и частотой вращения, а также между крутящим моментом и перепадом давления в целях эффективного управления режимом бурения.
2. Рабочие элементы и другие узлы двигателя должны быть выполнены в износо- и термостойком исполнении, обеспечивающем использование бурового раствора любой плотности и вязкости, в том числе с содержанием тампонирующих материалов.
Аварии в скважине происходят из-за нарушения её нормального состояния или работоспособности находящегося в ней бурового инструмента. Аварии приводят к временному прекращению процесса бурения, а в ряде случаев, к непредусмотренному закрытию скважины. На ликвидацию аварий затрачивается много времени и средств, что в конечном счёте повышает стоимость буровых работ. При ликвидации аварий возникают дополнительные повышенные нагрузки на буровое оборудование, сооружения и инструмент, что отрицательно сказывается на их надёжности и снижает безопасность проведения работ. Поэтому необходимо принимать все меры по предупреждению аварий.
Наиболее распространенные виды аварий, которые происходят в скважине с основным буровым инструментом, приведены в табл. 1