Удаления оксидных пленок с поверхности нержавеющей и быстрорежущей стали, а также титана, можно достигнуть, используя при температуре 370-3800С расплав едкого натра, в которые введено 1,5-2» гидрида натрия [11].
Химическое травление цветных металлов ведут в разных кислотах или их смесях, а в некоторых случаях и в щелочах, например, при обработке алюминия и его сплавов [21].
Электрохимическое травление. Электрохимический способ позволяет снизить расход химикатов, сократить продолжительность процесса, почти полностью исключает наводороживаине металла при травлении. Электрохимическое травление металлов ведут преимущественно на аноде при постоянном токе или с применением реверсирования тока
Для электрохимической обработки некоторых металлов предложен ряд растворов [1, 11, 22].
Универсальный электролит для электрохимической обработки тугоплавких металлов – ниобия, хрома, титана и их сплавов имеет состав, % (по массе): плавиковая кислота 3-4, фторид аммония 5-6, нитрат аммония 5-6 этиленгликоль 83-85, вода 8-10 [1, 23].
Таблица 1.
Электролиты и технологические режимы электрохимического травления сталей.
Обрабатываемые стали | Концентрация, г/л | Iа, А/дм3 | ||||
Н2SО4 | HCl | HF | FeSO4·7H2O | NaCl | ||
Углеродистые | 1 | 200-500 | 2-1 | 20-25 | 5-10 | |
Кремнистые | 2 | 300-350 | 0,2-0,3 | 5-11 | ||
Легированные | 3 | 80-100 | 10-20 | |||
4 | 250-300 | 5-10 |
В табл. 1 приведены наиболее распространенные составы электролитов для электрохимического травления черных металлов [1, 18].
В ряде случаев электрохимическое травление стальных деталей ведут, реверсируя ток, в щелочном электролите следующего состава, г/л; едкий натр 100, триэтаноламин 20, соотношении продолжительности катодного и анодного периодов 4: 4 Выгрузка деталей производится в анодный период [1, 11, 18, 22].
Состав электролита для обработки титана, % (по массе) плавиковая кислота 4-5, фторид аммония 5-6, этиленгликоль 89, вода остальное.
Для ниобия и его сплавов предложены электролиты, % (по массе), серная кислота 10, плавиковая кислота 20, этиленгликоль 70; плавиковая кислота 2, фторид аммония 5-6, нитрат аммония 3-4, глицерин 78-80, вода 8-10 [24].
Последний электролит не оказывает агрессивного воздействия на обрабатываемое изделие и оборудование [25].
Электрохимическую обработку кобальта проводят в электролите состава % (по массе): хлорид кобальта 25, этиленгликоль 72, вода 3 [1].
Для травления диэлектриков наибольшее промышленное применение получили растворы серной кислоты с сильным окислителем, в качестве которого используют прежде всего хромовый ангидрид, реже – бихромат калия или натрия. При травлении сополимеров стирола в этих растворах происходят окисление и удаление полибутадиена (каучука) и внедрение сульфогруппы в поверхностный слой пластика. При этом каркас пластика претерпевает незначительные изменения, выражающиеся в образовании в поверхностном слое углублений шарообразной и овальной формы глубиной от сотых до нескольких микрометров [7].
При травлении полипропилена вытравливаются расположенные в поверхностном слое низкомолекулярные и аморфные участки полимера. Появляющиеся при этом микроуглубления более глубоки и удобны для зацепления с металлом, чем у пластика АБС [23]. Поверхность большинства других диэлектриков разрушается в процессе травления, вследствие чего создается необходимая шероховатость (углубления, раковины, каналы и т. п.).
Хромовая кислота вызывает и окислительную деструкцию полибутадиеновой цепи с образованием СО2 и Н2О [7, 11].
Серная кислота в растворах травления действует преимущественно как обезвоживающий агент и растворитель окисленных фракций. С увеличением ее концентрации снижается содержание хромового ангидрида в растворе (за счет уменьшения растворимости) и возрастает разрушающее воздействие H2SO4 на каркас диэлектрика [7, 11].
При содержании в растворе 50 -70 % серной кислоты она с большей скоростью, чем окислитель, разрушает не только каучук, но и каркас пластмассы (в частности, пластика АБС) [25]. В интервале 70 - 80 % наблюдается улучшение травимости, однако поверхность быстро перетравливается, т.е. становится рыхлой, снижается механическая прочность.
Скорость травления возрастает с повышением температуры [7].
На практике для травления сополимеров стирола чаще всего применяют растворы, содержащие 20 - 40 % серной кислоты и 20 -30 % хромового ангидрида [11]. При травлении полиолефинов, полиацеталей, поливинилхлорида и других пластмасс используют насыщенные растворы хромового ангидрида или бихроматов в концентрированных растворах серной кислоты [26].
Для более мягкого действия растворов травления в них иногда добавляют ортофосфорную кислоту, но ее присутствие затрудняет их аналитический контроль [23]. В ряде случаев в раствор вводят и другие добавки для улучшения смачиваемости, активации поверхности, регулирования скорости травления компонентов диэлектрика и др.
Травление поликарбоната и полиэфиров осуществляют также и в растворах, содержащих едкий натр, а силикатных материалов – в растворах, в состав которых входит фтористоводородная кислота и ее соли, преимущественно кислые.
Зависимость между составом раствора, температурой продолжительностью обработки и природой диэлектрика довольно сложная [27]. Поэтому оптимальные состав раствора и режим травления для конкретного диэлектрика в большинстве случаев устанавливают экспериментально с учетом марки и способа его получения, режимов изготовления детали, ее геометрической формы, шероховатости поверхности, продолжительности эксплуатации раствора содержания в нем продуктов реакции, других факторов [1, 23, 24, 27, 31]
Наиболее подходящим для травления пластика АБС-2020 является раствор, содержащий (г/л):
ангидрид хромовый СгО3.......... 370—390
кислота серная H2SO4.................. 380—400
(при режиме обработки: температура – 63-680С продолжительность – 8-15 мин).
Для улучшения смачиваемости пластика в раствор травления вводят 0,5-1,5 г/л препарата «Хромин». С целью отвода продуктов реакции, обеспечения равномерности концентрации Сr6+ и температуры травление производят при умеренном перемешивании раствора сжатым воздухом [26].
При обработке труднотравимых диэлектриков иногда на их поверхность наносят промежуточное лаковое покрытие, которое подвергают травлению [7].
Корректируют хромовокислые растворы травления путем введения в них требуемого количества хромового ангидрида или бихромата, растворенного в минимальном количестве воды, и серной (или серной и ортофосфорной) кислоты [7, 28].
Способы устранения возможных неполадок, обнаруживаемых на операции травления в хромовокислых растворах, приведены в табл. 2.
Таблица 2
Основные неполадки в работе хромовокислых растворов травления
Неполадки | Причина | Способ устранения |
После травления поверхность пластика блестящая, не смачивается водой | Недостаточная продолжительность травления | Увеличить продолжительность травления |
Низкая температуры раствора | Нагреть раствор до требуемой температуры | |
Заниженное содержание компонентов | Проверить и откорректировать состав раствора | |
Накопление в растворе более 40-50г/лСr3+ или тяжелых металлов свыше 3г/л | Регенерировать или заменить раствор | |
Повышенная деформируемость деталей | Завышена температура раствора | Проверить температуру и охладить раствор |
Контроль качества травленой поверхности осуществляют визуально или под микроскопом. Оптимально протравленная поверхность полимера остается гладкой на ощупь, теряет блеск и приобретает незначительную равномерную матовость, хорошо смачивается водой и обеспечивает максимальное сцепление покрытия с основой. Под микроскопом она имеет вид губки . Среднеарифметическое отклонение микронеровностей от средней линии Rа~1 мкм.
Для определения микрошероховатости могут быть использованы различные микроскопы (оптические, металлографические, растровые, электронные сканирующие), а также профилометры и профилографы [29].
Для удаления значительного количества Сr6+, остающегося на поверхности диэлектрика после выполнения операций улавливания и (или) промывки, производят обезвреживание, заключающееся в обработке поверхности одним из растворов обезвреживания. При последующем активировании в коллоидном активаторе наиболее часто используют раствор кислоты соляной НС1 (плотность 1,19 г/см3), 150-500 мл/л. При этом промежуточные промывки между данными операциями не производят (их выполняют перед обезвреживанием), что дает возможность стабилизировать состав раствора активирования.
Если промывные операции после травления не обеспечивают достаточное удаление соединений Сr6+, обезвреживание осуществляют в двух растворах, например, натрия пиросульфита Na2S2O5 или кислоты соляной НС1, а затем после промывки – в растворе соляной кислоты.
Хром, оставшийся на поверхности обрабатываемых деталей и приспособлений, способствует снижению стабильности работы последующих растворов, особенно сенсибилизации и химического меднения [30].
Приготовляют составы обезвреживания путем растворения рецептурного количества компонентов в рабочей ванне, заполненной наполовину обессоленной водой, и доведения объема до требуемого.