FeS => FeO => Fe3О4
В конечном итоге при глубоком окислении все железо может быть перекислено до магнетита, который при температурах конвертирования находится в твердом состоянии. При перемешивании расплава воздухом будет образовываться однородная гетерогенная масса, состоящая из магнетита и оставшихся сульфидов.
Для отделения образующихся оксидов железа от сульфидов необходимо их конвертировать не в твердом а в жидком продукте и добиваться возможно меньшего переокисления железа до магнетита и получение его в основном в виде FeO по реакции:
2FeS + 3O2 = 2FeO + 2SO2 + Q
С этой целью для образования железосиликатного расплава в первом периоде конвертирования в конвертер подают кварц. При растворении вюстита в шлаке снижается его активность и тем в большей степени, чем больше концентрация SiO2 в шлаке.
В первый период конвертирования происходит постепенное накопление в конвертере обогащенной медью сульфидной массы. В связи с этим после каждой заливки штейна и его частичной продувки из конвертера сливают шлак и заливают дополнительную порцию штейна. Затем вновь проводят продувку.
Первый период конвертирования заканчивается холостой продувкой (без заливки штейна)., целью которой является практически полное окисление сульфида железа из обогащенной медью сульфидной массы и получение белого штейна, представляющего собой почти чистый сульфид меди CuS.
Химизм второго периода конвертирования, имеющего своей целью получение черновой меди, может быть выражен реакцией.
Cu2S + O2 = 2Cu + SO2
Которую часто изображают как последовательное протекание двух процессов
2Cu2S + 3O2 = 2Cu2O + SO2
Cu2S + 2Cu2O = 6 Cu + SO2
Процесс конвертирования в горизонтальных конвертерах является периодическим.
Рафинирование черновой меди от примесей по экономическим соображениям проводят в две стадии – сначала методом огневого рафинирования, затем электрохимическим методом.
Цель огневого рафинирования – подготовить медь к электролитическому рафинированию путем удалении из него основного количества примесей.
При электролитическом рафинировании решаются две задачи – глубокое рафинирование меди от примесей, что обеспечивает ее высокую электропроводност, и попутно извлечение ценных золота, серебра и селена [3].
3. Расчет материального баланса плавки
3.1. Расчет рационального состава медного сырья
Состав медного сырья,%: 23,0 Cu, 25,5 Fe, 33,0 S, 0,5 CaO, 0,5 MgO, 2,0 SiO2,5,2 Al2O3,10,3 прочие.
По минералогическому составу медь и железо находится в виде CuFeS2, остальное железо в виде FeS2.
Расчет ведем на 100 кг сырья.
Рассчитаем содержание CuFeS2
63,6 кг Cu входят в 183,4 кг CuFeS2
23 кг Cu входят в х кг CuFeS2
Х = 66,32 кг
Зная количество и состав халькопирита, найдем сколько серы и железа связано в халькопирите
183,4 кг CuFeS2 содержат 64 кг S
66,32 кг CuFeS2 содержат х кг S
Х = 23,14 кг
Количество железа в халькопирите
183,4 кг CuFeS2 содержат 64 кг Fe
66,32 кг CuFeS2 содержат х кг Fe
Х = 20,18 кг
Количество железа в пирите
25,5 – 20,18 = 5,32 кг
С этим количеством железа связано серы
55,8 кг Fe – 64 кг S
5,32 кг Fe – х кг S
Х = 6,10 кг
Количество пирита
5,32 + 6,10 = 11,42 кг
Остальная серы находится в элементарном состоянии
33 – 23,14 – 6,10 = 3,76 кг
По данным расчета составляем таблицу 1 рационального состава медного сырья.
Таблица 1 - Рациональный состав медного сырья, % CuFeS2
Минералы | Cu | Fe | S | SiO2 | CaO | MgO | Al2O3 | прочие | всего |
CuFeS2 | 23 | 20,18 | 23,14 | 66,32 | |||||
FeS2 | 5,32 | 6,10 | 11,42 | ||||||
S2 | 3,76 | 3,76 | |||||||
Пустая порода | 2,0 | 0,5 | 0,5 | 5,2 | 10,3 | 18,5 | |||
всего | 23 | 25,5 | 33,0 | 2,0 | 0,5 | 0,5 | 5,2 | 10,3 | 100 |
3.2. Обжиг медных концентратов в кипящем слое
Обжиг ведем на дутье, обогащенным кислородом до 35%. Степень десульфуризации при обжиге принимаем 55%, температуру обжига 8500С. Расчет ведем на 100 кг шихты.
Определим количество серы, диссоциирующей при обжиге.
По реакции
2CuFeS2 => Cu2S + 2 FeS + Sобразуется
S своб 66,32.32 / 366,7 = 5,79 кг
FeS 66,32.175,7 / 366,7 = 31,78 кг
Cu2S 66,32.159 / 366,7 = 28,75 кг
По реакции
FeS2 => FeS + Sобразуется
Sсвоб 11,42.32 / 119,85 = 3,05 кг
FeS 11,42.87,85 / 119,85 = 8,37 кг
Всего выделится свободной серы
5,79 + 3,05 = 8,84 кг
При 55% десульфуризации в газы перейдет серы
33,0.0,55 = 18,15 кг
В том числе 3,76 кг за счет окисления свободной серы концентрата и за счет окисления FeS
18,15 – 8,84 – 3,76 = 5,55 кг
Образуется сернистого ангидрида
18,15.2 = 36,3 кг
Принимаем, что в процессе обжига сернистое железо окисляется до Fe3O4 по реакции
3FeS + 5 O2 = Fe3O4 + 3 SO2
На практике наряду с образованием Fe3O4 может происходить образование FeO и Fe2O3
Количество окислившегося FeS
5,55.263,5 / 96 = 15,23 кг
В огарке останется сернистого железа
31,78 + 8,37 – 15,23 = 24,92 кг
Для окисления FeS потребуется кислорода
15,23.160 / 263,5 = 9,25 кг
Результаты расчетов сводим в таблицу 2.
Таблица 2 – Рациональный состав огарка
Соединение | Cu2S | FeS | Fe3O4 | Всего | ||||
кг | % | кг | % | кг | % | кг | % | |
CuFeSSiO2CaOMgOAl2O3О2Прочие | 235,75 | 79,920,1 | 15,849,08 | 63,5636,44 | 9,663,72 | 72,227,8 | 2325,514,832,00,50,55,23,7210,3 | 26,8829,8117,332,340,580,586,084,3512,05 |
Итого | 28,75 | 100 | 24,92 | 100 | 13,38 | 100 | 85,55 | 100 |
Выход огарка 85,55%.
Для определения материального баланса обжига рассчитаем количество серы и состав отходящих газов. Для окисления элементарной серы по реакции
S + О2 = SО2
Потребуется кислорода
(8,84 + 3,76).32 / 32 = 12,6 кг
Образуется при этом сернистого ангидрида
12,6.2 = 25,2 кг
Всего кислорода с учетом окисления сернистого железа потребуется
12,6 + 9,25 = 21,85 кг
Количество дутья при содержании кислорода 35% составит
22,4.21,85.100 / (35.32) = 43,7 м3
Азота в этом дутье будет
43,7.65 / 100 = 28,41 м3
Состав отходящих газов
кг м3 % (об)
SO2 36,3 12,7130,91
N2 40,5828,4169,09
Для проверки проделанных расчетов составляем материальный баланс обжига (таблица 3).
Таблица 3 - Материальный баланс обжига
Статьи баланса | Всего, кг | В том числе | ||||||
Cu | Fe | S | породы | прочие | О2 | N2 | ||
ЗагруженоШихтыВоздуха | 10062,43 | 23 | 25,5 | 33 | 8,2 | 10,3 | 21,85 | 40,58 |
Итого | 162,43 | 23 | 25,5 | 33 | 8,2 | 10,3 | 21,85 | 40,58 |
ПолученоОгаркаГазов | 85,5576,86 | 23 | 25,5 | 14,8318,17 | 8,2 | 10,3 | 3,7218,13 | 40,58 |
Итого | 162,43 | 23 | 25,5 | 33 | 8,2 | 10,3 | 21,85 | 40,58 |
3.3. Расчет материального баланса плавки обожженного концентрата
3.3.1. Расчет десульфуризации и состава штейна
Расчет ведем на 100 кг огарка
По данным практики десульфуризация при плавке огарка составляет 15-20%. Примем степень десульфуризации 15%. Тогда должно выделится серы
17,33.0,15 = 2,6 кг за счет окисления магнетитом конвертерного шлака и огарка.
В штейн перейдет серы
17,33 – 2,6 = 14,73 кг
По данным практики извлечение меди в штейн при плаке огарка составляет 93-96%. Для определения состава штейна примем, что извлечение составляет 93%. В штейн перейдет меди из огарка
26,88.0,93 = 25,0 кг
В заводских штейнах содержание серы колеблется в пределах 23-27%. Примем содержание меди в штейне 25%. Выход штейна будет равен
14,73 / 0,25 = 58,92 кг
Содержание меди в штейне составит
25,0.100 / 58,92 = 42,43%
Максимальная растворимость кислорода в штейне 6%. Примем содержание кислорода в штейне 2%.
На основании этих данных получаем следующий предварительный состав штейна
Cu42,4325,0Fe30,5718,01
S254,73О221,18
Для определения кислорода, связанного с магнетитом конвертерного шлака, примем, что все железо штейна переходит в конвертерный шлак состава,%: 2,3 Cu, 1,4 S, 25 SiO2,35 Fe, 11 O2,6 Al2O3,19,3 прочие. Количество конвертерного шлака составит
18,01 / 0,35 = 51,46 кг
Определим количество магнетита в конвертерном шлаке по отношению кислорода к железу
В FeO
О2: Fe = 16 / 55,85 = 0,286
В Fe3О4
О2: Fe = 64 / 167,55 = 0,382
Из полученных соотношений составляем уравнение
11 = 0,286х + (35 – х).0,382,
Где х – количество железа, связанного в виде FeО
35 – х – количество железа, связанного в виде Fe3О4
Отсюда х = 24,69 кг
С этим железом связано кислорода
24,69.16 / 56,85 = 7,07 кг
В Fe3О4 количество железа равно
35 – 24,69 = 10,31 кг
Количество кислорода
10,31.64 / 167,55 = 3,94 кг
Итого в конверторном шлаке содержится магнетита
10,31 + 3,94 = 14,25 кг или 14,25%
С конвертерным шлаком поступит магнетита
18,01.0,1425 / 0,35 = 7,33 кг
Практически он весь переходит в штейн.
По данным практики примем, что извлечение меди из конвертерного шлака в отражательной печи составляет 85%. В штейн из конвертерного шлака перейдет меди
51,46.0,23.0,85 = 1,01 кг
На основании расчетов состав штейна при плавке огарка с заливкой конвертерных шлаков будет следующим
Cu43,426,01Fe30,0518,01
S24,5814,73О21,971,18
3.3.2. Расчет количество флюсов для ведения плавки на заданном составе шлаков
Требуется подсчитать количество известняка, необходимое для плавки огарка, состав которого,%: 5 SiO2,50 CaO, 40 CO2,5 прочие.
Плавка ведется на отвальный шлак с содержанием 8% СаО. Конвертерный шлак в жидком виде заливают в печь.
Для расчета плавки примем, что все железо штейна переходит в конвертерный шлак, выход которого на 100 кг концентрата равен 51,46 кг. Для расчета состава шлака составляем предварительный баланс плавки (таблица 4).
Таблица 4 - Предварительный баланс плавки
Статьи баланса | Всего, кг | В том числе | ||||||||
Cu | Fe | S | SiO2 | СаО | Al2О3 | MgO | О2 | Прочие | ||
Загруженоогаркаконвертерного шлака | 10051,46 | 26,881,18 | 29,8118,01 | 17,330,78 | 2,3412,87 | 0,58 | 6,083,09 | 0,58 | 4,955,66 | 12,059,93 |
Итого | 151,46 | 28,06 | 47,82 | 18,05 | 15,21 | 0,58 | 9,17 | 0,58 | 10,01 | 21,98 |
Полученоштейнашлакагазов | 59,9388,443,09 | 26,012,05 | 18,0129,81 | 14,730,522,8 | 15,21 | 0,58 | 9,17 | 0,58 | 1,188,540,29 | 21,98 |
Итого | 151,46 | 28,06 | 47,82 | 18,05 | 15,21 | 0,58 | 9,17 | 0,58 | 10,01 | 21,98 |
Из баланса выводим предварительный расчетный состав шлака, переводя все железо в FeО