1.Высокие заготовки при
2.Заготовки умеренной высоты при 0,3-0,4 <
3.Низкие заготовки при
Из работы Л.А. Шофмана [67,68] следует, что траектория перемещение любой точки при однородном сжатии представляет собой ветвь кубической гиперболы, уравнение которой
Известно, что при пластическом сжатии в реальных условиях деформация неоднородна. Поэтому гипотеза плоских сечений, принимаемая при теоретическом анализе неправомерна, а следовательно, неправомерно условие
Рисунок 1.6. Напряжения на боковой поверхности цилиндрического образца при осадке плоскими плитами.
Результаты экспериментов, приведенные на рисунке 1.6, показали, что неоднородность деформации при пластическом сжатии цилиндрического тела приводит к тому, что на свободной бочкообразной поверхности тела возникают окружные (тангенсальные) растягивающие напряжения
Чем больше неоднородность деформации, тем при прочих равных условиях больше бочкообразность осаженной заготовки, а следовательно, больше и величина тангенсальных растягивающих напряжений, которые возникают на свободных поверхностях тела, и тем вероятнее нарушение сплошности металла.
Средние удельные давления при осадке цилиндрических заготовок представлены в виде диаграммы на рисунке 1.7 по Е.П. Унксову [61].
Рисунок 1.7. Удельные давления при осадке цилиндрических заготовок.
Л.А. Шофман в работе [67], отмечает, что если перед осадкой на торцы заготовки наложить тонкие прокладки из пластического металла, то усилие существенно снижается. При больших удельных давлениях применение тонких прокладок оказывается более эффективным, чем нанесение обычно применяемых смазок.
Так, например, опыты, проведенные автором, показали (рисунок 1.8), что применение алюминиевых прокладок толщиной 0,5 мм при осадке образцов из стали 45 (
Рисунок 1.8. Удельные давления
1- без прокладок и без смазки;
2- без прокладок, смазка машинным маслом;
3- с алюминиевыми прокладками;
4- сопротивление металла деформированию.
При пластическом сжатии заготовок плоскопараллельными плитами условная поверхность раздела течения в силу круговой симметрии имеет форму цилиндра радиуса
Рисунок 1.9. Схема осадки кольцевой заготовки, где х0 и х - начальный и конечный радиусы произвольно выбранной поверхности.
Из экспериментально-теоритических исследований проведенных И.Я. Тарновским [53] следует, что при эффективной смазке контактных поверхностей форма заготовки не влияет на формоизменение. После обжатия форма заготовки геометрически подобна первоначальной форме. По мере обжатия внешний и внутренний диаметры заготовки увеличиваются независимо от отношения
При осадке без смазки формоизменение металла становится более сложным (рисунок 1.10б), оно изменяется в зависимости от формы заготовки и, прежде всего в зависимости от отношений
Осадка тонкостенных заготовок (
При осадке заготовок с толстой стенкой (
Рисунок 1.10. Фотографии кольцевых заготовок после осадки:
а – со смазкой; б – в условиях сухого трения
Рисунок 1.11а. Формоизменение кольцевой заготовки при
Рисунок 1.11б. Формоизменение кольцевой заготовки при
Течение металла в двух взаимно противоположных направлениях свидетельствуют о том, что деформированное состояние металла на различных участках образца различно [67]. На участке, ограниченном диаметрами R и
Рисунок 1.12. Схема напряженно-деформированного состояния при осадке кольцевых образцов.
Величина радиуса раздела течения в процессе осадки непрерывно изменяется. При этом изменяется соотношение объемов двух участков, на которые поверхность раздела течения разделяет все тело. Это свидетельствует о демонотонности процесса осадки.
Указанное обстоятельство приводит к тому, что при заданных начальных размерах деформируемого тела не представляется возможным определить его конечные размеры, минуя рассмотрение промежуточных стадий формоизменения.
Авторы работ [68,53] отмечают, что для решения рассматриваемой задачи приходится прибегать к разделению процесса на ряд этапов, принимаю, что на каждом достаточно малом этапе поверхность раздела течения сохраняет неизменный радиус. Тогда, определив размера тела в конце предшествующего этапа, можно с помощью формулы (1.1) определить радиус поверхности раздела на последующем этапе формоизменения.
где
Отсюда следует, что радиус критической поверхности зависит от условий внешнего трения, относительных размеров заготовки и относительной толщины ее стенки.
Переходя, таким образом, последовательно от одного этапа к другому, можно определить конечные размеры деформированного тела. Чем больше дробность заданной суммарной деформации, тем точнее конечные результаты расчета.