Смекни!
smekni.com

Обследва процеса на реформинг на природния газ и получаване на водород (стр. 10 из 13)

Пропаноламин предизвиква сярно отравяне

Моно- и диетаноламина Няма отровно действие

във воден разтвор

Метанол Същото


Друга причина за дезактивация на катализатора може да бъде него-вото прегряване от попадане на големи количества въглеродни оксиди вследствие от нарушаване на работния режим на стадия конверсия на оксидите на въглерода и промивка на конвертирания газ от СО2. Ако част от газа постъпващ за метаниране байпасира стадия на конверсия на СО е възможно отравяне на катализатора за метаниране със серни съединения. То е аналогично на отравянето на катализатора от частична-та конверсия.

2. Газификация на въглеводороди и нефтени остатъци

Процесът на газификация (частично окисление с кислород) на газо-образни и течни горива се осъществява във факел при температура 1300 – 1600 0С и налягане 3,0 – 10,2 MРa в стоманени реактори, футировани с огнеопорни материали. Газообразни и течни горива, кислород и пара се подават в реактора през горелка, където става разпрашаване на течното гориво на малки капчици и смесването им с окислителя. Капките гориво се изпаряват в атмосферата на горещия газ и взаимодействат с кислорода, образувайки факел. При частично окисление на пари и газове се изключва само стадия на разпрашаване и изпарение.

Процесът на газификация се осъществява при недостиг на кислород с образуване на горещ газ. В качество на окислител служи кислорода. Участието на другия окислител – водните пари – в процеса на газифика-ция на въглеводородите е малко. Сярата се превръща в сероводород в повече от 90%. Около 0,5 – 3% от въглеродното гориво се превръща в сажди.

Полученият газ на 90 – 95% се състои от СО и Н2. В него се съдържа също въглероден диоксид, метан, азот, сероводород, органични съедине-ния на сярата, а също и непрореагирали водни пари. Необходимата дъл-бочина на превръщане без използване на катализатор се достига за сметка на провеждането на процеса при висока температура. Процесът се води при автотермични условия; топлината се получава за сметка на екзо-термичните реакции на газификация с образуване на СО и СО2.

Състава и добива на газа в процеса на паро-кислородна газифика-ция на алифатните въглеводороди се определя от условията на равнове-сие на същите реакции на парова конверсия на метана и конверсия на СО, които определят състава и добива на газ от ПК. Разликата е в това, че в реактора заедно с пара се подава и кислород, в който, макар и в неголеми количества се съдържа и азот. Уравненията на материалния баланс са дадени в таблица 16.

Газифията на алифатни въглеводороди с паро-кислородно подаване в производство на водород се използва рядко, тъй като е икономически неефективно в сравнение с паро-каталитичната конверсия. Практически интерес за производство на водород представлява газификацията на неф-тените остатъци – мазут, гудрон и др.

В състава на нефтените остатъци влизат не само високомолекулни парафинови въглеводороди, но и ароматни, хетероциклени и други съеди-нения. За технологични пресмятания на процеса на газификация е доста-тъчно да се знае елементния състав на суровината. Технологичните прес-мятания се улесняват и от това, че процеса се води при високотемперату-рни условия, когато съдържанието на метан в газа според условията на ТД равновесие е ниско и се определя основно от емпирични данни и лежи в границите 0,3 – 0,5% от газа.

При въвеждане на 0,5 м3 водна пара и 1 м3 кислород и достигане на равновесие не става отлагане на въглерод, но в действителност при про-цеса на газификация се отлага въглерод във вид на сажди. Затова в тех-нологичните изчисления се взема предвид саждообразуването в размер на 2 – 3%. За опростяване на технологичните изчисления се пренебрегва уравнието за равновесие на ПК на метана, а се отчита само равновесната реакция на конверсия на СО с водна пара.

Съдържанието на сяра в нефтените остатъци може да достигне 6 – 7%. ТД изчисления за преобразуването на сяра в условията на паро-кислородна газификация на нефтените остатъци са показали, че 90% от сярата се превръща в сероводород, около 7% - в карбамил-сулфид и 2% - във СSи неголямо количество – около 1% става на сажди.

Кислородът, съдържащ се в нефтените остатъци в количества не повече от 0,5 – 0,7 %, в процеса на газификация се превръща в кислород-съдържащи компоненти – Н2О, СО2 и СО. Не е нужно да се отчита вли-яние на кислорода в техническите изчисления, тъй като неговото присъст-вие практически не влияе на разхода на техническия кислород, нито на добива на газовите компоненти. Същото се отнася и за азота в суровината, съдържанието на който може да достигне до 1%. Азотът от суровината преминава основно в газа, но при газификация се образуват също в малки количества амоняк, азотни оксиди и цианиди. Трудно е да се определи за-висимостта на добива на тези съединения от съдържанието на азота в суровината. Технологичните изчисления, определящи разхода на кисло-род за газификация, добива и състава на газа за 1 кг суровина, се свежда до следното. Да обозначим елементния състав на 1 кг от суровината:

Въглерод............................. С Азот + кислород............ N

Водород.............................. НВлага.............................. W

Сяра.................................... S Зола................................ А

Разходът на пара – „а” кг/кг от суровината, концентрацията на кисло-род в техническия кислород СО2, м33, а концентрацията на азот, аргон и други благородни газове в техническия кислород тогава е 1 - СО2. Обема на кислорода в м3, изразходван за изгаряне на водорода – δ, а степента на ПК на СО с образуване на Н2 и СО2 – β.

За отределяне на въглерода, участващ в процеса на газификация с О2 и Н2О с образуване на СО + СО2, трябва от въглеродното гориво за извадим въглерода, превръщащ се в сажди (0,02 кг), и въглерод, израз-ходван за получаване на метан. Приемайки съдържанието на метана в га-за 0,5% и добива на газ – 3 м3 за 1 кг суровина, получаваме разхода на въглерод за образуване на метан равно на 0,008 кг. Количеството на гази-фицирания въглерод С` е равно на:

С` = С – (0,02 + 0,008)

Количеството на водорода в суровината, участващ в процеса на га-зификация се определя по уравнението:


Н` = Н – 0,00134 – 0,056.S

,където 0,00134 и 0,056.Sе количеството водород, превръщащо се в СН4 и Н2Sсъответно.

Добива на отделните газови компоненти се определя по уравнения, приведени в таблица 16

Табл. 16Материален баланс за пресмятане на паро-кислороднатагазификация на нефтените остатъци

Компоненти Обем, м3 за 1 кг суровина
Изходни компоненти Конвертиран газ
Н2ОО2N2COCO2H2CH4H2SCOS + CS2 1,243.(a + W)0,935.C` + δ(0,935.C` + δ)(1 - СО2)/ СО2------ 1,243.(a+W)–1,867.C`.β+2.δ-(0,935.C`+δ).(1-СО2)/СО2+0,8N1,867.C`(1 – β)1,867.C`.β11,2.H` + 1,867. C`.β - 2δ0,0150,63.S100.S

След заместване на обема на компонентите Н2, СО2, СО, Н2О от таблицата в уравнението на константата на равновесие за реакцията на конверсия на СО с водни пари ще получим:

K2 = CH2.CCO2

CCO.CH2O

K2 = β.(11,2.H` + 1,867.C`.β – 2.δ)

(1 – β).[1,243.(a + W) – 1,867.C`.β + 2.δ]

Топлинният баланс на процеса на газификация се описва с урав-нението:


Qн + qт + qH2O + qO2 = 1,867.C`.(1 – β).(12600 + t2.cCO) + (11,2.H` +

1,867.C`.β – 2.δ).(11100 + t2.cH2) + [1.243.(a + W) + 2.δ]. t2cH2O +

1,867.C`.β. t2.cCO2 + qc+ q

,където Qне топлината от изгаряне на суровината, kJ/kg; qт е количество топлина, въвеждано със суровината в реактора, kJ/kg; qH2O е количество топлина, което се въвежда с парата, kJ/kg; qO2 е количеството топлина, което се въвежда с кислорода в реактора, kJ/kgl; t2e температурата на из-ход от реактора, 0С; cCO,cH2,cH2O,cCO2 са средни топлинни капацитети на компонентите при постоянно налягане и температура на изход от реактора, kJ/(m3.0C); q– загуба на топлина в околната среда, kJ; qc– топлината на изгаряне и енталпията на саждите, метана, сероводорода, серните окиси, въглеродния сулфид и азота, пресметнати по уравнението:

qc= 1347 + 0,005.Qн + 18200.S

Решавайки съвместно уравнението на равновесие на реакцията на конверсия на СО с водни пари и топлинния баланс ще намерим β и δ.

Szargan, P. е изучавал процеса на паро-кислородна газификация на течно гориво в промишлен реактор. Реакционните зони в газгенератора, според неговите изследвания, са показани на фигура 10.


а б

Фиг. 10 а) Реакционни зони на факелния процес нагазификация на течно гориво: 1 – зона на факела; 2– зона на циркулация; 3 – зона на завършване нареакцията.

б) Изменение концентрацията на кислорода въвфакела при газификация на течни горива (прекъсната линия – екпериментални данни, непрекъсната линия – теоретични данни)

В горните зони течното гориво се разпръсква механично с форсун-ки и пневматичноот паро-кислородната смес в горелката. Малките капки се изпаряват в атмосфера на горещ газ в зона 1 и 2. Потокът на окислителя засмуква изпареното гориво и газ от зона 2 в зона 1. В пламъка част от парите на горивото и газа изгарят, при което се достига температура по-висока от 2500 0С.