Смекни!
smekni.com

Огнестойкое стекло "Пиран" (стр. 2 из 14)

У аллиловых производных в сравнении с ПС и ММА пониженная реакционоспособность. Полиаллиловые материалы устойчивы к атмосферным воздействиям, действию органических растворителей, разбавленных растворов, кислот и щелочей. Они обладают высокой стойкостью к старению, причём их механическая деформация не сопровождается ухудшением светопропускания. Достоинством полиаллилкарбонатов является устойчивость к биологическим средам, к действию микробов и грибков, что необходимо, при изготовлении контактных линз.

Единственный серьёзный недостаток этих материалов состоит в их сравнительно высоком температурном коэффициенте линейного расширения, на порядок превышающем этот коэффициент для силикатных стёкол.

Недостатком ПММА, ПС и их сополимеров является низкая теплостойкость и ударопрочность. Значительно выше эти характеристики у ПК, который характеризуется приемлемой прозрачностью, термостойкостью, ударной прочностью, низким влагопоглощением. Однако у него большоё двойное лучепреломление, он плохо формуется, имеет низкую твёрдость поверхности.

Полиуретанакрилаты отличаются от эпоксиполимеров, ПММА, ПС – их вязкоупругие свойства, обеспечивают возможность больших упругих деформаций, для них характерны высокая устойчивость к воздействию лазерного излучения, меньшие значения тепловыделения и объемной усадки .Недостатки: невозможность их использования в лазерной технике без кварцевых или стеклянных подложек, высокий температурный коэффициент показателя преломления.

Эпоксиполимеры характеризуются наличием упругих деформаций, не больше 1%. Невозможность больших упругих деформаций снижает устойчивость светопрозрачных полимеров к лазерным воздействиям.

Наиболее широкое распространение получило полиметилметакрилатное стекло.

Горение полимеров

Горение полимеров относят к горению твердых газифицирующихся топлив, в большинстве случаев, не содержащих окислителя в твердой фазе. Однако воспламенение и горение полимеров имеет ряд особенностей, которые надо учитывать при применении теорий, разработанных для твердых топлив. Горение полимеров представляет собой сложную совокупность многостадийных физико-химических превращений, происходящих в конденсированной и газовой фазах, а также на поверхности их раздела. Вследствие гетерогенности процесса очень большую роль играют площадь и свойства контактной поверхности горения.

На рис. 1.1. приведена схема горения полимеров. Естественно, что в зависимости от структуры полимера, характера его термического разложения, присутствия различных добавок, условий воспламенения и горения будут преобладать те или иные направления процесса из приведенных на схеме. Например, при горении одних полимеров наблюдается интенсивное каплепадение, при горении других преобладает коксообразование; полимерные материалы сильно различаются и по интенсивности саже – и дымообразования.

Общей чертой большинства схем горения является замыкание процесса в цикл с помощью так называемого обратного теплового потока от пламени к материалу, которым связаны два основных химических процесса – термическое разложение полимеров и горение продуктов деструкции.

Горение – быстрый экзотермический процесс окислительно-восстановительного превращения топлива, протекающий в большинстве случаев с образованием пламени. Горение углеводородов всегда сопровождается возникновением пламени. Горение большинства обычных полимеров имеет в основном тепловую природу. Тепловыделение в ходе процесса окисления приводит к повышению температуры и увеличению скорости реакции. При горении паров жидких веществ и диспергированных твердых веществ смешение с окислителем возможно либо до воспламенения, либо непосредственно в пламени за счёт диффузии компонентов. Считают, что горение обычных полимеров на воздухе протекает в диффузионном режиме.

На практике пламена полимеров не всегда являются чисто диффузионными, а чаще всего промежуточными между диффузионными и кинетически контролируемыми пламенами предварительно перемешанных газов.

Пространственную область, в пределах которой исходное вещество нагревается, воспламеняется и сгорает, называют волной горения. Высокотемпературную область пламени, где происходят основные реакции превращения горючей смеси, обычно называют фронтом пламени, особенностью которого является способность к распространению в горючей смеси. В диффузионном пламени фронт возникает в месте смешения горючих веществ с окислителем, и скорость горения определяется в основном скоростью диффузии окислителя в пламя, а не скоростью химических реакций.

Для удобства анализа иисследования сложный многостадийный процесс горения полимеров делят на следующие временные и пространственные зоны: прогрева; химических превращений в конденсированной фазе; «холодного» пламени; пламени; продуктов сгорания. Зоны процессов в газовой и конденсированной фазах разделяются поверхностью газификации.

Поверхностный слой полимера под действием тепла нагревается до температуры, при которой начинаются физические и химические превращения в конденсированной фазе, приводящие при более высокой температуре к термическому и термоокислительному разложению и газификации полимера. Поток продуктов разложения полимера в виде газа, пара, дыма, уносящий с собой диспергированные частицы не успевшего разложиться полимера, поступает в газовую фазу, где смешивается с окислителем и нагревается. Горючие продукты подвергаются дополнительному разложению и частичному окислению. Эту темную зону называют предпламенной или холоднопламенной.

Перенос тепла при горении полимеров осуществляетсяпутем теплопроводности, конвекции и излучения, а для термопластичных полимеров еще и путем движения горячего расплава в виде капель, потеков или брызг. Вклад каждого вида переноса тепла в общий тепловой баланс зависит от характеристик горящей системы и условий, в которых она находится. Обратный тепловой поток от пламени к поверхности полимера функционально связан со скоростью горения.

Существенное влияние на распространение пламени оказывают частицы дыма, которые, будучи более активными излучателями, чем газы при той же температуре, способны усиливать теплопередачу за счет излучения на поверхность полимера. При интенсивном сажеобразовании светящиеся пламена полимеров обладают повышенной излучательной способностью, в результате чего увеличиваются тепловые потери в окружающую среду и обратный тепловой поток.

До сих пор недостаточно выяснена степень участия кислорода в деструкции полимеров при горении. Это является еще одной причиной отсутствия корреляции между термической стойкостью полимеров и их горючестью. Особый интерес вызывает вопрос о поступлении кислорода из зоны пламени к поверхности горящего полимера, поскольку от этого зависит вклад в общий процесс разложения полимера экзотермического процесса термоокисления и соотношение между обратным тепловым потоком от пламени и тепловым эффектом термоокислительной деструкции полимера.

В общем, поступление кислорода к поверхности полимера определяется условиями горения, а вклад термоокисления в общий процесс разложения полимера зависит не только от содержания кислорода у поверхности, но, как уже отмечалось, и от химического строения полимерной цепи, механизма и скорости деструкции полимера в данных условиях горения.

По характеру деструктивных превращений полимеры иногда условно делят на две группы. К первой группе относят полимеры, молекулярные цепи которых при высоких температурах полностью разлагаются до летучих низкомолекулярных продуктов или образуют очень небольшое количество нелетучего остатка. Из этой группы для полимеров винилового ряда основными процессами, определяющими состав образующихся продуктов, могут быть деполимеризация, реакции передачи цепи с последующим разрывом по р-связи или оба этих процесса. Из гетероцепных полимеров в эту группу входят простые и сложные алифатические полиэфиры и полиамиды.

Ко второй группе относят полимеры, при термическом разложении которых низкомолекулярные продукты образуются в результате отщепления атомов и групп, обрамляющих основную цепь макромолекулы, и внутримолекулярной перестройки, что сопровождается появлением двойных связей или циклов в цепи и поперечных связей между цепями вплоть до образования нелетучего, пространственно сшитого карбонизованного остатка. Сюда относят насыщенные полимеры винилового ряда с гидроксильными, сложноэфирными и галогенными заместителями, полиакрилонитрил, целлюлозу и большое число полимеров с ароматическими и гетероциклическими звеньями в цепи. Из этой группы иногда выделяют сшитые полимеры, образующие при термодеструкции в основном коксообразный остаток и очень мало летучих продуктов.

При разложении полимеров первой группы протекает практически полная газификация, что облегчает исследование их деструкции. При разложении полимеров второй группы на поверхности образуется карбонизованный нелетучий слой, изменяющий условия массо- и теплообмена на границе раздела газообразной и конденсированной фаз и влияющий на последующее разложение.

Возможные пути снижения горючести

Способы снижения горючести полимерных материалов можно рассмотреть на основе анализа схемы процесса горения, представленной на рис. 1.1. Диффузионное горение полимеров представляет собой многостадийный циклический самоподдерживающийся процесс, в котором определяющую роль играет взаимосвязанный перенос тепла и массы. Чтобы снизить горючесть, необходимо воздействовать на процесс горения в конденсированной и газовой фазах. В любом случае цель воздействия – разрыв цикла процесса горения в каком-либо месте. В зависимости от места и способа разрыва цикла горения можно в принципе предложить множество путей получения полимерных материалов с пониженной горючестью. Эти пути можно сгруппировать следующим образом: