Смекни!
smekni.com

Огнестойкое стекло "Пиран" (стр. 4 из 14)

Среди других неорганических замедлителей горения можно отметить сульфаты и бораты аммония, применяемые для целлюлозных материалов и действующее в основном в конденсированной фазе, хотя выделяющейся при разложении солей аммиак разбавляет горячую смесь газов. Однако растворимость солей аммония в воде ограничивает их применение. Исследование влияния на воспламеняемость целлюлозы различных солей неорганических кислородсодержащих кислот серы показало, что особенно эффективен сульфат алюминия, активность которого как замедлителя горения синергически повышается в присутствии соединения брома. Добавки в основном действуют в конденсированной фазе с участием всех трех элементов: S, Al, Br. Сульфат алюминия способствует сшиванию полимерных цепей, а соединения брома дает нелетучий AlBr3, освобождая часть серы в летучей форме. Избыток брома может действовать в газовой фазе.

Снижение горючести с помощью органических галогеносодержащих соединений

Для снижения горючести полиолефинов, полимеров стирола и многих других пластиков широко применяют галогенсодержащие органические соединения. Основное внимание в настоящем разделе уделено механизму действия этих соединений.

Введение хлора в полимерные цепи изменяет природу и количество образующихся летучих продуктов деструкции этих полимеров по сравнению с углеводородными аналогами. Горючесть полимеров зависит не только от общего содержания хлора, но и от механизма термической деструкции.

Из хлорсодержащих органических замедлителей горения алифатические соединения типа хлорпарафинов наиболее эффективны, но они разлагаются при сравнительно низких температурах, и продукты их разложения могут вызывать коррозию перерабатывающего оборудования. Коксообразующая эффективность антипиренов представляет собой отношение избытка углерода в остатке к содержанию добавки, а избыток углерода рассчитан по разности между общим содержанием углерода в остатке и исходным содержанием углерода в полимере и в добавках.

Броморганические соединения являются гораздо более эффективными замедлителями горения, чем хлорорганические. Введение брома в полиолефины и НВг в газовую фазу над полимерами заметно влияет на горение полимеров. Броморганические соединения также используют в основном в виде синергических смесей с соединениями металлов.

В основе различных механизмов химического ингибирования горения лежит конкурирующее взаимодействие молекул топлива и ингибитора с наиболее реакционноспособными радикалами Н-, ответственными за разветвление кинетической цепи процесса горения. В обсуждены предложенные механизмы ингибирования галогенами реакций, протекающих в пламени. Помимо химического ингибирования замедление горения галогенами может быть вызвано их влиянием на физические процессы. Однако вклад таких процессов зависит от условий горения и не всегда является определяющим Приведем наиболее часто обсуждаемый механизм, в котором основная роль отводится галогенводородам, образующимся при термическом разложении галогенсодержащих соединений в конденсированной фазе или в газовой фазе по реакции

RX + H- ↔ R – +НХ

Галогенводороды могут взаимодействовать с наиболее активными радикалами цепного процесса по реакциям, в результате которых образуется менее активный радикал Х –:

Н-+ НХ ↔ Н2 + Х-

НО- + НХ ↔ Н2 О +X-


При столкновении с молекулами углеводородного топлива возможна регенерация галогенводорода:

RH + X- ↔ HX + R-

Однако это представление несколько упрощенное, не учитывает сложной последовательности реакций превращения топлива и не объясняет различную эффективность бромсодержащих соединений. Исследование ингибирования различных пламен указывает на сложность происходящих процессов.

Эффективность снижения горючести полимеров галогенсодержащими соединениями усиливается в присутствии оксидов некоторых металлов, особенно сурьмы.

Снижение горючести с помощью фосфоросодержащих соединений

Обширную группу применяемых на практике замедлителей горения составляют фосфорсодержащие соединения. В эту группу входят весьма разнообразные по своему типу соединения: от красного фосфора до фосфорсодержащих полиэфиров и полифосфазенов. Очень широк и круг полимеров для снижения горючести, которых успешно применяются фосфорсодержащие антипирены. Эти антипирены действуют по самым различным механизмам. Разнообразие механизмов объясняется тем, что фосфорсодержащие антипирены применяются как в виде добавок, не реагирующих с полимером в процессе переработки полимерных материалов и эксплуатации изделий, так и в виде реактивных соединений, вступающих в химическое взаимодействие с полимером. Характерной чертой горения и высокотемпературного пиролиза этих полимеров на воздухе является образование коксоподобного остатка. Фосфорсодержащие антипирены, как правило, вызывают значительное увеличение содержания коксового остатка при горении или пиролизе полимеров и, следовательно, уменьшение количества летучих продуктов деструкции.

В присутствии фосфорсодержащих антипиренов существенную роль играет более интенсивное образование карбонизованного слоя на поверхности горящего полимера. Этот слой, видимо, может выполнять функцию теплоизолятора, особенно в тех случаях, когда кокс имеет пористую структуру или является твердой пеной. Не исключено также, что карбонизованный слой служит проводником тепла, по которому тепло отводится из зоны пиролиза. Очевидно, что фактором, определяющим, какой из этих двух механизмов доминирует в каждом конкретном случае, является теплопроводность коксового слоя. Поэтому для ответа на вопрос, какова же функция карбонизованного слоя, необходимы измерения его теплопроводности. Не исключено также, что в некоторых случаях карбонизованный слой играет роль барьера для продуктов деструкции полимера при горении, диффундирующих из объема полимеров в предпламенную зону. Следует отметить, что теплоизолирующий слой на поверхности горящего полимера может быть образован не только из коксоподобного пиролизного остатка полимера, но и из продуктов термического превращения фосфорсодержащих антипиренов. Так, при горении полиэфиров, содержащих поли – 1,3 – фениленфосфонат, образуется стекловидный слой, состоящий в основном из x.Фосфорсодержащие замедлители горения проявляют наибольшую эффективность в полимерах, имеющих явно выраженную тенденцию к коксообразованию.

Эффективность фосфорсодержащих антипиренов не зависит от степени окисления фосфора: трифенилфосфин и трифенилфосфат обладают равной эффективностью.

Различия в эффективности фосфанатов и фосфатов как антипиренов связаны с различной способностью этих соединений влиять на карбонизацию полиэфиров при пиролизе. Во всяком случае в смесях метилфосфоновой кислоты с нафталином при нагревании до 600–700°С карбонизация протекает интенсивнее, чем в смесях трифенилфосфата с нафталином в аналогичных условиях. Вместе с тем установлено, что метил- и фенилфосфоновые кислоты образуются при пиролизе полиэфиров, содержащих фрагменты фосфонатной структуры. Вероятно, эти кислоты являются более активными катализаторами процессов карбонизации, чем эфиры фосфорной кислоты. Остатки после пиролиза полиэфиров, имеющих в своем составе фосфор, и смесей полиэфиров с соединениями фосфора состоят из полифосфорных кислот и угольных слоев. При этом карбонизованные остатки характеризуются упорядоченной структурой.

Сравнительно низкая эффективность фосфорсодержащих замедлителей горения в полиолефинах и некоторых других не образующих кокса полимерах, видимо, результат того, что механизм в этих случаях иной, чем в коксообразующих полимерах. Поскольку известно, что летучие соединения фосфора ингибируют предварительно смешанные пламена, можно предположить, что продукты термического разложения фосфорсодержащих замедлителей горения способны действовать как ингибиторы горения некоксующихся полимеров в газовой фазе.