УО «БГУИР»
кафедра инженерной графики
РЕФЕРАТ
на тему:
«ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ МЕТОДОМ МОРА. ПРАВИЛО ВЕРЕЩАГИНА»
МИНСК, 2008
Рассмотрим теперь общий метод определения перемещений, пригодный для любой, линейно деформируемой системы при любой нагрузке. Этот метод предложен выдающимся немецким ученым О. Мором.
Пусть, например, требуется определить вертикальное перемещение точки А балки, представленной на рис. 7.13, а. Заданное (грузовое) состояние обозначим буквой к. Выберем вспомогательное состояние той же балки с единичной
силой, действующей в точке A и в направлении искомого перемещения. Вспомогательное состояние обозначим буквой i(рис. 7.13,6).
Вычислим работу внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния.
Работа внешних сил будет равна произведению единичной силы на искомое перемещение ya
а работа внутренних сил по абсолютной величине равна интегралу
Имеем
или
(1)Формула (7.33) и есть формула Мора (интеграл Мора), которая дает возможность определить перемещение в любой точке линейно-деформируемой системы.
В этой формуле подынтегральное произведение MiMkположительно, если оба изгибающих момента имеют одинаковый знак, и отрицательно, если Miи Мк имеют разные знаки.
Если бы мы определяли угловое перемещение в точке А, то в состоянии iследовало бы приложить в точке А момент, равный единице (без размерности).
Обозначая буквой Δ любое перемещение (линейное или угловое), формулу (интеграл) Мора напишем в виде
(2)В общем случае аналитическое выражение Miи Мк может быть различным на разных участках балки или вообще упругой системы. Поэтому вместо формулы (2) следует пользоваться более общей формулой
(3)Если стержни системы работают не на изгиб, а на растяжение (сжатие), как, например, в фермах, то формула Мора имеет вид
(4)В этой формуле произведение NiNKположительно, если оба усилия растягивающие или оба сжимающие. Если стержни одновременно работают и на изгиб и на растяжение (сжатие), то в обычных случаях, как показывают сравнительные расчеты, перемещения можно определять, учитывая лишь изгибающие моменты, так как влияние продольных сил весьма мало.
По тем же соображениям, как отмечалось ранее, в обычных случаях можно не учитывать влияния поперечных сил.
Вместо непосредственного вычисления интеграла Мора можно пользоваться графо-аналитическим приемом «способом перемножения эпюр», или правилом Верещагина.
Рассмотрим две эпюры изгибающих моментов, из которых одна Мк имеет произвольное очертание, а другая Мi прямолинейна (Рис 7.14, а и б).
Сечение стержня на участке AВ будем считать постоянным. В этом случае
(5)Величина MKdzпредставляет собой элементарную площадь dωk эпюры Мк (заштрихована на рисунке). Таким образом,
(6)Но
(7)следовательно,
(8)Но
представляет собой статический момент площади эпюры Мк относительно некоторой оси у, проходящей через точку О, равный ωkzc, где ωk — площадь эпюры моментов; zс — расстояние от оси у до центра тяжести эпюры Мк. Из чертежа видно, что (9)где Мсi — ордината эпюры Mi, расположенная под центром тяжести эпюры Мк (под точкой С). Следовательно,
(10)т. е. искомый интеграл равен произведению площади эпюры Мк (любой по очертанию) на расположенную под ее центром тяжести ординату прямолинейной эпюры Мсi. Значение величины ωкМсi считается положительным, если обе эпюры располагаются по одну сторону стержня, и отрицательным, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента).
Необходимо помнить, что ордината Мсiберется обязательно в прямолинейной эпюре. В том частном случае, когда обе эпюры прямолинейные, можно умножить площадь любой из них на соответствующую ординату другой.
Для стержней переменного сечения правило Верещагина перемножения эпюр неприменимо, так как в этом случае уже нельзя выносить величину EJиз-под знака интеграла. В этом случае следует выразить EJкак функцию абсциссы сечения и затем уже вычислять интеграл Мора (1).
При ступенчатом изменении жесткости стержня интегрирование (или перемножение эпюр) производят для каждого участка отдельно (со своим значением EJ) и затем суммируют результаты.
В табл. 1 приведены значения площадей некоторых простейших эпюр и координат их центра тяжести.
Таблица 1
Вид эпюры | Площадь эпюры | Расстояние до центра тяжести |
Для ускорения вычислений можно использовать готовые таблицы перемножения эпюр (табл.2).
В этой таблице, в клетках на пересечении соответствующих элементарных эпюр, приведены результаты перемножения этих эпюр.
При разбивке сложной эпюры на элементарные, представленные в табл. 1 и 7.2, следует иметь в виду, что параболические эпюры получены от действия только одной распределенной нагрузки.
В тех случаях, когда в сложной эпюре криволинейные участки получаются от одновременного действия сосредоточенных моментов, сил и равномерно распределенной нагрузки, во избежание ошибки следует сложную эпюру предварительно «расслоить», т. е. разбить ее на ряд самостоятельных эпюр: от действия сосредоточенных моментов, сил и от действия равномерно распределенной нагрузки.
Можно также применить другой прием, не требующий расслоения эпюр, а требующий лишь выделения криволинейной части эпюры по хорде, соединяющей крайние ее точки.
Покажем оба способа на конкретном примере.
Пусть, например, требуется определить вертикальное перемещение левого конца балки (рис. 7.15).
Суммарная эпюра от нагрузки представлена на рис. 7.15, а.
Таблица 7.2
MiMk | |||||||||
Эпюра от действия единичной силы в точке А представлена на рис. 7.15, г.