Процесс создания аксонометрической проекции окружности
Как известно, прямоугольной проекцией окружности, расположенной в плоскости, составляющей угол V с плоскостью проекций Р, является эллипс. Большая ось AрBр эллипса - проекция диаметра AB, параллельного плоскости Р. Отрезок AрBр перпендикулярен к проекции CрNр, и малая ось DрEр эллипса (проекция диаметра DE) cовпадает с прямой CрNр. При построении аксонометрических проекций часто приходится строить изображения окружностей, расположенных в координатных плоскостях XY, XZ, YZ или в плоскостях, им параллельных. В этом случае нормалями к плоскости окружностей являются соответственно оси Z, Y, X. Следовательно, направления больших осей эллипсов, изображающих проекции окружностей, всегда перпендикулярны соответственно осям Zр, Yр, Xр, а малые оси совпадают по направлению с этими осям. Большие оси соответствуют тем диаметрам изображаемых окружностей, которые параллельны картинной плоскости. Если аксонометрическое изображение выполняется с сокращением по направлениям осей Xр, Yр, Zр, то большие оси эллипсов 1, 2, 3 равны диаметру d изображаемых окружностей. В изометрической проекции малые оси эллипсов равны 0,58d. В диметрической проекции малые оси эллипсов 1, 3 равны d/3, а малая ось эллипса 2 равна 0,88d.
Особенности создания проекций трехмерных тел
Построение проекций многогранников сводится к построению их вершин и ребер. Для призмы удобнее начинать с построения вершин полностью видимого основания. В пример возьмем шестиугольную призму, высота которой совпадает с осью Z, а верхнее основание расположено в плоскости осей X и Y. Изометрическая проекция этого основания строится точно так же, как проекция пятиугольника. Так как длина всех боковых ребер призмы равна высоте призмы h, то для построения нижнего основания из вершин верхнего основания проведены прямые, параллельные оси Zр, и на них отложены отрезки, равные h. Концы отрезков соединены прямыми линиями. Построение аксонометрической проекции пирамиды, cледует начать с построения основания, а затем из точки Oр отложить на оси Zр высоту пирамиды и полученную вершину пирамиды Sр соединить с вершинами основания.
Особенности создания проекций линий пересечения кривых поверхностей
Проекцию линии пересечения поверхностей можно строить или по координатам ряда ее точек, взятых с чертежа проектируемого предмета, или непосредственно на аксонометрическом изображении, используя для построения вспомогательные поверхности. Следует по возможности подбирать такие вспомогательные поверхности, которые с заданными поверхностями дают на чертеже простые для построения линии пересечения. Так при построении линии пересечения цилиндров вспомогательные плоскости следует проводить параллельно прямолинейным образующим цилиндрических поверхностей.
Последовательность вычерчивания аксонометрической проекции
Построение аксонометрической проекции предмета нужно производить в последовательности, позволяющей избежать нанесение на чертеже лишних линий. Пример 1. Построение аксонометрической проекции детали. Этап 1. Hанесение осей. Этап 2. Вычерчивание очертаний верхней плоскости фланца. Этап 3. Вычерчивание очертаний видимой части нижней плоскости фланца. Этап 4. Вычерчивание видимой части эллипса проекции окружности основания цилинра и образующих цилиндра. Этап 5. Удаление лишних линий и обводка изображений.
Пример 2. Построение диметрической проекции детали с вырезом 1/4 части детали. Этап 1. Hанесение осей. Этап 2. Вычерчивание фигур сечений, расположенных в плоскостях, ограничивающих вырез. Этап 3. Вычерчивание очертаний верхней плоскости фланца. Этап 4. Вычерчивание очертаний видимой части нижней плоскости фланца, окружности основания цилиндра и образующих цилиндра. Этап 5. Обводка и нанесение линий штриховки.