Смекни!
smekni.com

Основы взаимозаменяемости (стр. 19 из 21)

Способ равных допусков применяют, если составляющие размеры имеют один порядок (например, входят в один интервал диаметров) и могут быть выполнены с примерно одинаковой экономической точностью. В этом случае из формулы (2.12) получим средний допуск на звено

ТсАi = TAD/(m-1).

Этот допусккорректируют для некоторых составляющих размеров в зависимости от их значений, конструктивных требований и технологических возможностей изготовления, нотак, чтобы выполнялись условия по уравнениям (2.11) и (2.12). При этом выбирают стандартные поля допусков, желательно предпочтительного применения.

Способ равных допусков прост, но недостаточно точен, так как корректировка допусков составляющих размеров произвольна. Его можно рекомендовать только для предварительного назначения допусков составляющих размеров.

Способ допусков одного квалитета применяют, если все составляющие цепь размеры могут быть выполнены с допуском одного квалитета и допуски составляющих размеров зависят от их номинального значения.

Требуемый квалитет определяют следующим образом.

Допуск составляющего размера

ТАi = аi×ii , (2.13)

где i — единица допуска (мкм); а — число единиц допуска, содержащееся в допуске данного размера (определяется по ГОСТу 25346 - 89).

Для размеров от 1 до 500 мм

, где D — средний геометрический размер (мм) для интервала диаметров по ГОСТу 25346 - 89, к которому относится данный линейный размер.

Подставив выражение (2.13) в уравнение (2.12) и решив его относительно а, получим:

. (2.14)

По значению ас выбирают ближайший квалитет. Число единиц допуска ас, вычисленное по формуле (2.14), в общем случае не равно како-

му-либо значению а, определяющему квалитет, поэтому выбирают ближайший квалитет. Найдя по ГОСТу 25346 - 92 или по ГОСТу 25347 – 82* допуски составляющих размеров, корректируют их значения, учитывая конструктивно-эксплуатационные требования и возможность применения процесса изготовления, экономическая точность которого близка к требуемой точности размеров. Допуски для охватывающих размеров рекомендуется определять, как для основного отверстия, а для охватываемых — как для основного вала. При этом следует удовлетворить уравнению (2.12).

Найдя допуски, определяют значения и знаки верхних и нижних отклонений составляющих размеров так, чтобы они удовлетворяли уравнениям (2.11).

Решение прямой задачи способом назначения допусков одного квалитета более обосновано, чем решение способом равных допусков.

Пример 1. Рассчитать допуски и предельные отклонения для размеров А1, А3, А4 и А6 (рис. 2.64) при заданном АD = 1…3,5 мм.

Решим эту задачу методом полной взаимозаменяемости способом одного квалитета.

Согласно уравнению размерной цепи (2.10) AD = A2 + A3 + A4 + A5 + A6 - A1 = (25 + 50 + 107 + 21 + 40) – 240 = 3.

Определяем число единиц допуска или коэффициент квалитета. Для этого используем уравнение (2.14):

,

где iAi приняли по табл.3.3 [10]; k – количество звеньев с заданными допусками.

Зная число единиц допуска ас, по ГОСТу 25347 – 82* определяем номер квалитета. В рассматриваемом случае значение находится между IТ12 (а = 160) и IТ13 (а = 250).

Рекомендуется выбирать допуски по более грубому квалитету. Однако в нашем случае ас ближе к IТ12, поэтому допуски на размер корпуса А1 устанавливаем по IТ13, а на остальные (более технологичные в изготовлении размеры) – по IТ12.

Исходя из номинальных размеров звеньев цепи и выбранных квалитетов, по ГОСТу 25347-82* определяем допуски составляющих звеньев: ТА1 = 720 мкм; ТА3 = 250 мкм; ТА4 = 350 мкм; ТА6 = 250 мкм.

Произведем проверку суммы установленных допусков составляющих звеньев с остатком допуска замыкающего звена, который должен распределиться на оставшиеся составляющие звенья:

. 1500 ¹ 720 + 250 + 350 + 250 = 1570.

Корректируем допуск одного составляющего звена так, чтобы получилось равенство допусков. Так как необходимо уменьшить допуск одного из звеньев, по конструкции узла следует проанализировать, какой размер экономически выгоднее выполнить более точным. Принимаем, что наиболее технологичны размеры А3 и А4.

Выбираем для корректировки размер А4 и уменьшаем допуск на его изготовление на 70 мкм: ТА4 = 280 мкм. В этом случае равенство допусков соблюдено.

Назначаем отклонения для всех составляющих звеньев.

В рассматриваемом примере на все размеры назначаем отклонения в минус, за исключением размеров А1 и А6, для которых отклонения назначаем симметрично.

Проставляем отклонения на размеры: A1 = 240 ± 0,360; A2 = 50 - 0,250;

A4 = 107- 0,280; A6 = 40 ± 0,125.

Производим проверку отклонений составляющих звеньев по отклонениям замыкающего звена: ESAD = ADmax - AD = 3,5 – 3 = + 0,5; EiAD = ADmin - AD = 1 – 3 = -2,0;

.

Проверяем соответствие отклонений по уравнениям (2.11):

+0,5 = (0 + 0 + 0 + 0 + 0,125) – (-0,360) = 0,125 + 0,360.

Поставленное условие не удовлетворяется. Тогда принимаем неизвестными отклонения для того звена, у которого корректировали допуск (нестандартный допуск), т.е.

.

Это звено увеличивающее, значит из уравнения (2.11) определяется его верхнее отклонение: + 0,5 – 0,125 – 0,360 = x; x = + 0,015.

Зная верхнее отклонение и допуск, определим нижнее отклонение по формуле

ei = + es – T; откуда y = 0,015 – 0,280 = -0,265;

.

Проверим второе отклонение по формуле (2.11):

-2,0 = (-0,250) + (-0,5)×2 + (-0,265)+ (-0,125) – (+0,360) = - 2,0.

Равенство удовлетворяется, значит все допуски и отклонения составляющих звеньев определены правильно.

2.11.3. Теоретико-вероятностный метод расчета размерных цепей

При расчете размерных цепей методом максимума — минимума предполагалось, что в процессе обработки или сборки возможно одновременное сочетание наибольших увеличивающих и наименьших уменьшающих размеров или обратное их сочетание. Оба случая наихудшие в смысле получения точности замыкающего звена, но они маловероятны, так как отклонения размеров в основном группируются около середины поля допуска. На этом положении и основан теоретико-вероятностный метод расчета размерных цепей.

Применение теории вероятностей позволяет расширить допуски составляющих размеров и тем самым облегчить изготовление деталей при практически ничтожном риске несоблюдения предельных значений замыкающего размера.

Обратная задача. В результате совместного влияния систематических и случайных погрешностей центр группирования может не совпадать с серединой поля допуска, а зона рассеяния — с величиной допуска. Величина такого несовпадения, выраженная в долях половины допуска на размер, называется коэффициентом асимметрии,

,

где М(Аi) – математическое ожидание, средний арифметический размер i – го звена; Aсi – размер, соответствующий середине поля допуска.

В этом случае уравнение размерной цепи по средним размерам будет иметь вид

. (2.15)

Используя теорему о дисперсии [D(xi) =si2] суммы независимых случайных величин, можно записать:

. (2.16)

Для перехода от средних квадратических отклонений s к допускам или полям рассеяния используют коэффициенты относительного рассеяния li. Он является относительным средним квадратическим отклонением и равен (при поле рассеяния wj = Tj)

lj = 2sj/Tj . (2.17)

Для закона нормального распределения (при Tj = 6sj )

;

для закона равной вероятности (при

)
;

для закона треугольника (Симпсона) (при

)
.

Подставив выражение (2.17) в уравнение (2.16), получим:

или
, (2.18)

где t – коэффициент, зависящий от процента риска и принимаемый по данным [10].

Определив ТАD по формуле (2.18), вычисляют среднее отклонение замыкающего звена как Ес(АD) =

(2.19)

и его предельные отклонения:

Еs(АD) = Ес(АD) + TAD/2; Еi(АD) = Ес(АD) - TAD/2. (2.20)

Прямая задача. Допуски составляющих размеров цепи при заданном допуске исходного размера можно рассчитывать четырьмя способами.

При способе равных допусков принимают, что величины ТАj, Ec(Aj) и lj для всех составляющих размеров одинаковы. По заданному допуску TAD по формуле (2.18) определяют средние допуски TcAj:

.

Найденные значения TcAj и Ec(Aj) корректируют, учитывая требования конструкции и возможность применения процессов изготовления деталей, экономическая точность которых близка к требуемой точности размеров. Правильность решения задачи проверяют по формуле (2.18).

При способе назначения допусков одного квалитета расчет в общем аналогичен решению прямой задачи методом полной взаимозаменяемости. При этом среднее количество единиц допуска определится по формуле

.

Способ пробных расчетов [50] заключается в том, что допуски на составляющие размеры назначают экономически целесообразными для условий предстоящего вида производства с учетом конструктивных требований, опыта эксплуатации имеющихся подобных механизмов и проверенных для данного производства значений коэффициентов l. Правильность расчета проверяют по формуле (2.18).