2.3.1. Электрические сопротивления контактов при точечной сварке
Наличие электрических контактных сопротивлений обусловлено относительно небольшой площадью электрического контакта по сравнению с номинальной площадью контактирующих поверхностей. Это происходит из-за наличия неровностей на поверхностях деталей и электродов, а также из-за различных не электропроводных поверхностных образований: оксидных и гидрооксидных пленок, адсорбированных влаги, масел, пыли и т.п. С увеличением сопротивлений контактов, как правило, уменьшается и стабильность их значений. Большие и не стабильные значения электрических сопротивлений контактов являются основными возмущающими факторами процесса КТС, которые могут приводить не только к отклонениям параметров качества сварных соединений, но и к образованию дефектов типа выплеск или непровар. На сопротивление контактов деталь–деталь и электрод–деталь при точечной сварке наиболее значимо влияют исходное состояние поверхностей деталей и усилие их сжатия (рис. 2.19).
Влияние состояния поверхности на контактное сопротивление очень велико. При этом на его величину оказывает влияние и шероховатость поверхностей, и сопротивление деформации металла в поверхностном слое, и параметры поверхностных пленок. Увеличение параметров шероховатости, а также толщины и прочности поверхностных пленок, при одинаковых остальных условиях, приводят к увеличению контактного сопротивления в десятки, сотни, а иногда и тысячи раз (табл. 2.3).
Механические и электрические процессы, протекающие в сварочных контактах в процессе формирования соединений за цикл сварки и определяющие его электрические параметры, очень сложны. Это затрудняет их математическое описание, т. е. разработку математических моделей контактов при КТС. Задача осложняется еще и неопределенностью, а также случайностью параметров, которые характеризуют шероховатость поверхностей после их технологической обработки и поверхностные пленки. Так, о реальном профиле шероховатых поверхностей авторы работы [127] замечают следующее: «…Надо обладать большим воображением, чтобы в реальных очертаниях выступов увидеть правильную геометрическую фигуру. …Существование неровностей с заостренными вершинами вообще представляется маловероятным».
Для условий точечной сварки наиболее адекватной считается ситовая модель проводимости контактов. На ее основе разработан ряд методик для расчетного определения электрического сопротивления контактов. Из них наибольшую известность получили две методики.
Одна из них — это методика Р. Хольма, разработанная им для шинных контактов и приведенная, например, в более поздней работе [152]. Эта формула затем Ф. И. Кислюком [7, 106] была введенная в теорию контактной точечной сварки и до настоящего времени не претерпела существенных изменений [3]:
, (2.12)где rДД0 и а — коэффициенты, определяемые экспериментально; FЭ — усилие сжатия электродов.
Другая же методика, первоначально разработанная К. А. Кочергиным для стыковой сварки [107], а затем распространенная им же и на сварку точечную, учитывает в определенной мере реальные микропластические деформации в контактах. В ней микрогеометрия шероховатой поверхности моделируется правильными четырехгранными пирамидами одинаковой высоты и рассчитывается сопротивление системы этих пирамид в условиях их деформирования. По крайней мере, эта методика описывает реальные микропластические деформации качественно [4, 13]:
, (2.13)где: ρΔ — удельное электрическое сопротивление металла в масштабе микрошероховатости; (1…2) f — толщина контактного слоя; АС — контурная площадь контакта; Х — функция нагрузки и сопротивления деформации металла (определение АС и Х см. в зависимостях (2.8) и (2.9)).
Электрические же сопротивления контактов электрод–деталь rЭД. до сих пор, как правило, отдельно не рассчитывают. Их, по предложению
А. С. Гельмана [155], принимают равными половине величины сопротивлений в контактах деталь–деталь rДД, т. е.:
Следует отметить, что возможность использования зависимостей (2.13) или (2.14) в современных методиках решения технологических задач точечной сварки весьма проблематична. Очевидно, что зависимость (2.12) не отражает физической сущности проводимости контактов и представляет собой функцию, аппроксимирующую экспериментальные измерения rДД. Поэтому она может быть использована только для тех условий сварки, при которых определялись её коэффициенты. Специализированных же банков данных их значений, как отмечается в работе [156], пока нет, а имеющиеся их значения не точны и зачастую представлены в некорректной форме. Это же в полной мере можно отнести и к значениям ρΔ в зависимости (2.13). Кроме того, вычисление в ней значений АС (см. зависимость (2.8)) при точечной сварке весьма неопределенно.
Таким образом, несмотря на то, что исследования механизма формирования контактов при контактной точечной сварке и их влияния на процесс формирования соединения весьма многочисленны и глубоки, их, по-видимому, нельзя считать завершенными. Отсутствуют приемлемые для решения современных технологических задач методики расчётного определения электрического сопротивления участка электрод–электрод и, в частности, сопротивления контактов. Так, в работе [156] при разработке современных САПР ТП для точечной сварки рекомендуется использовать все ту же зависимость (2.12). В работе же [4] автор зависимости (2.13)
К. А. Кочергин отмечает, что существующие методики расчетов описывают процессы, протекающие в контактах, в основном только качественно, и точность количественных расчетов по данным методикам весьма низкая.
Поэтому, в большинстве случаев, даже когда решают задачи по определению в зоне сварки полей распределения потенциалов и температуры в относительно точной постановке, например, численным решением дифференциальных уравнений, сопротивления контактов либо вообще не учитывают, либо задают их по зависимостям типа (2.12).
2.3.2. Электрические сопротивления собственно свариваемых деталей
Электрическое сопротивление собственно деталей — это сопротивление, которое определенным образом распределено в объеме деталей, расположенном между сжимающими их электродами.
Величину электрического сопротивления собственно детали rД в большинстве случаев определяют по методике А. С. Гельмана. Еще в 40-х годах 20-го в. им была теоретически определено распределение потенциалов в свариваемых деталях путем решения методом конечных разностей дифференциального уравнения, описывающего электрическое поле
, (2.15)где φ — потенциал в рассматриваемой точке; z и r — цилиндрические координаты пространства.
Решением этого уравнения с граничными условиями, отражающими особенности протекания электрического тока при точечной сварке на участке электрод–детали–электрод, им определена топография растекания линий тока в деталях до диаметра dj (см. рис 2.18) при различных условиях сварки и разработана инженерная методика расчета электрического сопротивления rД собственно свариваемых деталей [16, 85, 155]:
, (2.16)где: АГ — коэффициент (рис.2.20), учитывающий уменьшение сопротивления детали rД относительно сопротивления цилиндра rЦ, высотой s и диаметром dК, которое происходит из-за растекания линий тока до диаметра dj; ρТ — удельное электрическое сопротивление металла деталей; kР — коэффициент, учитывающий неравномерность нагрева деталей.
Следует отметить поразительную, для того времени и тех вычислительных средств (расчетов на арифмометрах), точность решенияПри решении этой же задачи растекание линий тока в деталях
К. А. Кочергин моделирует их токопроводящее сечение в виде двух усеченных конусов, вершинами обращённых к контактам (показаны штриховыми линиями на рис 2.18). Это же сопротивление деталей rД он рассматривает как сумму сопротивлений конусов и сопротивлений за счет искривления линий тока в близи контакта (уменьшения площади токопроводящего сечения). В результате такого решения [4, 13] величину rД им предложено определять по следующей зависимости: