Смекни!
smekni.com

Основы теории и технологии контактной точечной сварки (стр. 17 из 44)

Охлаждение металла в зоне сварки и его кристаллизация в ядре сопровождается температурным и фазовым уменьшением объема, которое приводит на этой стадии формирования соединения к возникновению неравномерного поля остаточных растягивающих напряжений. Это является одной из основных причин образования в соединениях дефектов усадочного характера (трещин, пор, раковин). Только пластическое течение металла в этот период может компенсировать его усадку и предотвратить образование вышеуказанных дефектов сварных соединений [3, 16, 62, 188, 189].

Сведения о пластических деформациях при КТС носят преимущественно качественный характер. Это обусловлено как трудностями их экспериментальных исследований, в первую очередь, из-за закрытого характера зоны сварки и малого ее объема [3, 16, 62, 188, 189], так и трудностями точной математической постановки и решения задачи по определению параметров напряжений и деформаций в условиях динамичного процесса формирования соединений [190...195]. Даже численные методы решения дифференциальных уравнений с применением ЭВМ не позволяют пока достаточно точно определить все сложные взаимовлияния и взаимосвязи термодеформационных процессов, протекающих в зоне формирования соединения [169…172, 174...176, 196...198].

В этой связи весьма перспективным представляется использование для исследований термодеформационных процессов при КТС приближенных теорий напряжений и деформаций, а также расчетно-экспериментальных методов, основы которых изложены, например, в работах [199, 200].

2.5.1. Методики экспериментальных исследований макродеформаций металла в зоне сварки

Известные экспериментальные исследования процессов макропластических деформаций металла в зоне формирования соединения при КТС проводились в основном по трем методикам.

По первой из них параметры пластической деформации металла в зоне формирования точечного сварного соединения определяли на образцах с направленной текстурой, как, например, в работе [185]. Суть этой методики заключается в следующем.

Свариваемые образцы изготовляются из заготовок, имеющих ярко выраженную, направленную текстуру (проката, поковок). При этом плоскость поверхностей деталей должна быть либо перпендикулярной, либо параллельной к направлению линий текстуры. О деформации металла в зоне сварки судят по искривлениям текстурных линий (рис. 2.28). Однако эта методика не позволяет количественно определять параметры деформаций металла в зоне сварки и отражает лишь качественную картину пластического течения металла в процессе формирования соединения.

По второй методике [62, 189] исследования деформаций при КТС проводились на моделях деталей, рассеченных по плоскости оси электродов и изготовленных из упругих материалов, в частности, из резины. Основное ее достоинство заключается в том, что она относительно легко осуществима технически. Однако корректность полученных результатов вызывает сомнения, поскольку в этой методике не соблюдается один из


основных принципов пластического деформирования металла: неизменность объема металла при пластическом его течении.


Третья методика — это так называемая «методика координатных сеток», которая широко используется для исследований процессов ПД, например, при обработке металлов давлением. Экспериментальные исследования процессов пластической деформации металла в зоне формирования соединения при контактной точечной сварке по этой методике проводятся на натурных образцах с предварительно нанесенной координатной сеткой, технология изготовления которых предложена и описана в работе [128].

При исследованиях пластических деформаций в плоскостях контактов деталь–деталь и электрод–деталь координатная сетка наносилась на поверхности образцов (рис. 2.29). После этого такие образцы сваривались по обычной технологии точеной сварки, соответствующей материалу деталей и их толщине, а после сварки соединения разрушались. Для выявления динамики изменения параметров макропластических деформаций при КТС по изменению координатной сетки процесс сварки прерывали через заданные промежутки времени, кратные 0,02 с.

При исследовании деформаций в плоскости оси электродов образцы изготовлялись разъемными и координатная сетка наносилась на торцевые поверхности образцов. Перед сваркой образцы совмещались торцевыми поверхностями и зажимались в специальном приспособлении. В этом случае сварку осуществляли так, чтобы плоскость совмещенного разъема образцов совпадала с осью электродов. После сварки такие образцы разрушались по торцевому разъему и производились измерения искажений координатной сетки (рис. 2.30).


Обработка результатов экспериментов в части количественного измерения параметров пластической деформации осуществлялась по методике, описанной в работах [201, 202]. При этом деформация оценивалась только по деформации сторон координатной сетки. Оценить же сдвиговые деформации металла в различных точках зоны сварки затруднительно из-за высокой погрешности измерений угла сдвига, которая в данном случае получается соизмеримой с его величиной.

Относительные смещения металла в зоне сварки

и относительные его деформации
по координатам z и r в соответствии с принятой методикой оценивались по следующим зависимостям:

, (2.28)

, (2.29)

где l0 и l1 — расстояния от базы измерений до и после сварки (при измерении радиальных смещений по координате r в плоскости сварочного контакта и в плоскости оси электродов за базу принималась ось электродов, а при измерении осевых смещений по координате z за базу принималась плоскость свариваемого контакта); h0 и h1 – длина сторон координатной сетки до и после сварки.

2.5.2. Характер пластических деформаций металла в зоне сварки
на стадии нагрева

Проведенными экспериментальными исследованиями [203, 204] установлено, что радиальные (координата r) относительные деформации и смещения металла в плоскости поверхностей свариваемых деталей, в частности в плоскостях контактов электрод–деталь и деталь–деталь (рис.2.31), а также в плоскости оси электродов (координата z) распределяются неравномерно как по площади контактов, так и по толщине деталей.

При точечной сварке легких сплавов относительные радиальные (по координате r) смещения

металла в плоскости контакта деталь–деталь (рис. 2.31, а, в, д) не превышают 2...4 %. Причем, зона пластических деформаций распространяется за контур уплотняющего пояска не больше, чем на 5...15 % от его диаметра dП. В плоскости контакта электрод–деталь величину относительных осевых (по координате z) смещений
можно считать вообще незначительной, так как они в течение процесса сварки не превышает 0,5...1 % (рис. 2.31, б, г, ж).

Относительные радиальные (по координате r) деформации металла в плоскости контактов электрод–деталь и деталь–деталь

распределяются неравномерно. При этом они даже меняют знак.

В контуре контакта деталь–деталь координатная сетка растягивается. Наибольшая степень деформаций растяжения

, которая достигает 1,5...3 %, наблюдается на оси электродов. На периферии контакта и за его пределами металл сжимается. Причем сжатие металла локализовано на самой периферии уплотняющего пояска и в относительно узком кольце вокруг контактов деталь–деталь, ширина которого не превышает 5...15 % от их диаметров. Здесь степень деформаций сжатия металла
весьма значительна и достигает 7...15 %.

В плоскости контакта электрод–деталь в направлении оси электродов (по координате z) металл сжимается (рис. 2.31, б, г, ж). Однако степень деформации

металла по оси z относительно не велика. Она даже на периферии контакта, не превышает 2...3 %.

Вместе с тем, относительные осевые смещения

металла в плоскости оси электродов по координате z весьма значительны. Наибольшие относительные осевые смещения
металла в плоскости оси электродов наблюдаются в центре контакта. Их величина к концу процесса достигает значений 8...13 % (рис. 2.31, ж). По толщине детали их величина относительно стабильна. Это объясняется тем, что осевые относительные деформации
металла не велики и, как показали исследования, не превышают 0.5...3 %. Причем, наименьшие значения они имеют в срединной полосе свариваемых деталей.