Проведенными исследованиями и обработкой известных результатов экспериментов других исследователей, а также результатов расчетов температуры методом конечных разностей, установлено наличие корреляционной зависимости между максимальным значением температуры в контакте электрод–деталь ТЭ и относительным проплавлением деталей hЯ/2s (рис. 3.10). Зависимость
удовлетворительно описывается следующей, относительно простой, аппроксимированной функцией: , (3.38)где ТПЛ — температура плавления металла; hЯ — высота ядра; s —толщина свариваемых деталей.
Наиболее трудоемко определение изменения в процессе формирования соединения коэффициентов azt и art, характеризующих изменение градиента температуры по координатам z и r. Для этого необходимо измерять значения температуры в характерных точках (см. рис. 3.5), а затем определять значения azt и art обратным расчетом по зависимости (3.36). Трудоемкость определения этих коэффициентов можно несколько уменьшить после начала плавления металла. Для этого экспериментально следует измерять изменение высоты hЯt и диаметра dЯt ядра, а коэффициенты azt и art так же определять обратным расчетом по зависимостям (3.40) и (3.41). Обработкой значительного числа экспериментальных данных установлено, что характер изменения коэффициентов azt и art в процессе формирования точечных сварных соединений зависит в основном от геометрии рабочей поверхности электродов и жесткости режимов сварки.
Наиболее близкий характер изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами со сферической рабочей поверхностью (рис. 3.11). При сварке электродами со сферической рабочей поверхностью плавление металла начинается в относительно небольшом объёме и увеличение высоты hЯt (рис. 3.11, а) и диаметра dЯt (рис. 3.11, б) ядра происходит плавно. Это обусловлено тем, что градиент изменения температуры по координатам z и r в начале процесса нагрева весьма высок, а в процессе сварки плавно уменьшается, вследствие чего уменьшаются и значения коэффициентов azt (рис. 3.11, а) и art (рис. 3.11, б).
Изменения градиента температуры по координатам z и r в процессе формирования соединения при сварке электродами с плоской рабочей поверхностью различаются в большей степени, в особенности в начале процесса сварки (рис. 3.12).
Конечно, полученные таким образом значения коэффициентов azt и art весьма приближённы, но, как показали сравнения расчётных и экспериментальных значений температуры и размеров ядра, приемлемы для решения приближенных технологических задач. Для практических расчетов полученные значения коэффициентов azt и art обобщены аппроксимированными функциями, описывающими их изменение в процессе формирования соединений (зависимости (3.35) и (3.36)). Значения коэффициентов m1, n1, m2 и n2, необходимые для расчетов температуры в зоне формирования соединения по данному расчетно-экспериментальному методу, для различных условий сварки обобщены в табл. 3.2 [215, 217].
Таблица 3.2
Значения коэффициентов m1, n1, m2 и n2 для расчетов температуры в зоне формирования соединения при различных условиях сварки
Условия точечной сварки | Значения коэффициентов*) | |||
m1 | n1 | m2 | n2 | |
Электродом со сферической рабочей поверхностью | 1,9...2,1 | 0,5...0,7 | 1,4...2,1 | 0,5...0,7 |
Электродом с плоской рабочей поверхностью | 1,6...1,9 | 0,35...0,45 | 1,9...2,1 | 0,45...0,55 |
С обжатием периферии сварной точки | 1,2...1,8 | 0,25...0,35 | 0,05...0,8 | 0,35...0,45 |
*) Большие значения относятся к более жестким режимам |
Изменение температуры в процессе КТС в различных точках зоны сварки, рассчитанное по данному расчетно-экспериментальному методу, в частности, в центре контакта деталь–деталь, в контакте электрод–деталь вполне согласуется с имеющимися данными, полученными экспериментально (осциллографированием) и расчетами методом конечных разностей и конечных элементов (рис 3.14).
Характер изменения температурного поля по координатам и времени вполне соответствует имеющимся данным, полученным как экспериментально, так и решениями дифференциальных уравнений методами конечных разностей и конечных элементов.
3.3.2 Методики расчетного определения размеров ядра и средних
значений температуры в зоне сварки
При решении большинства технологических задач КТС, в частности определения силовых параметров режимов сварки, возникает необходимость в расчетном определении размеров ядра (как правило, его диаметра и высоты) и средних значений температуры в определенных участках зоны формирования соединения.
Размеры ядра расплавленного металла можно определить по положению изотермы температуры плавления, в частности, высоту hЯt и диаметр dЯt ядра можно определить по координатам пересечения изотермы температуры плавления ТПЛ с координатными осями z и r. Положение изотермы любой температуры в зоне формирования соединения в любой момент времени можно определить из зависимости (3.36), если значение температуры изотермы ТИ подставить в ее левую часть. После преобразований получаем выражение:
, (3.39)которое является общеизвестным [208] уравнением эллипса, но только с изменяющимися по времени полуосями.