Смекни!
smekni.com

Основы теории и технологии контактной точечной сварки (стр. 27 из 44)

3) зона застоя (участки c1о и оc2)

;

где σZ — напряжения, нормальные к плоскости свариваемого контакта;
μ — коэффициент трения; r — радиальные координаты точек в плоскости поверхности деталей.


Наличие таких участков в контактах при КТС экспериментально подтверждается, например, в работе [129].

Решением приближенного уравнения равновесия, предложенного
Е. П. Унксовым [219, 220],

,

где s — толщина детали; σz, σr, и σθ — соответственно, нормальные относительно плоскости свариваемого контакта, радиальные и окружные напряжения; совместно с условием пластичности Губера – Мизеса

, (3.45)

где σД — это сопротивление пластической деформации металла в области уплотняющего пояска; получены функции, описывающие изменение нормальных напряжений σ1Z, σ2Z, σ3Z на различных участках контакта, которые, применительно к условиям точечной сварки, имеют следующий вид:

- первый участок при rbrra

; (3.46)

- второй участок при rcrrb

; (3.47)

- третий участок при 0 rrc

. (3.48)

Здесь μ – коэффициент трения; dП – диаметр контурной площади контакта (уплотняющего пояска).

Координату границы зоны торможения rb можно определить по зависимости, приведенной в работе [221], которая, применительно к условиям точечной сварки имеет вид

. (3.49)

Поскольку при КТС в контакте электрод–деталь и, в особенности, деталь–деталь наблюдается схватывание металла [128, 129], то коэффициент трения μ можно принять равным 0,5. Тогда, согласно (3.49) при μ = 0,5 — координата
, т. е. зона скольжения (участки a1b1 и a2b2) отсутствуют, а зона торможения (участки b1c1 и b2c2) доходит до границы контакта.

Расчеты показали, что, пренебрегая уменьшением касательных напряжений в зоне застоя (с1о и ос2 (см. рис. 3.19)), получаем абсолютную ошибку при определении средней величины нормальных напряжений σСР, не превышающую 5...10 %, причем в свариваемом контакте только до начала плавления металла. Поэтому, чтобы упростить расчеты, можно допустить, что распределение касательных напряжений τ в области 0 rdП/2 равномерно и зона торможения распространяется до центра контакта, т. е. rС = 0.

Тогда по известной теореме о среднем, после подстановки в нее зависимости (3.47), среднее значение сжимающих нормальных напряжений в свариваемом контакте σСРt в любой момент процесса формирования соединения t можно определить следующим образом

, (3.50)

где r1t и r2t – соответственно нижний и верхний пределы интегрирования.

При КТС нижний r1t и верхний r2t пределы интегрирования изменяются в течение процесса формирования соединения. До момента начала образования ядра контакт твердого металла осуществляется по всей площади уплотняющего пояска. Поэтому в этот период пределы интегрирования r1t = 0 и r2t = dПt /2 и интегрирование зависимости (3.47) следует проводить в интервале 0…dПt /2. При появлении ядра контакт твердого металла осуществляется по уплотняющему пояску шириной bПt = dПt /2 – dЯt/2. Следовательно, интегрирование зависимости (3.47) в этот период следует проводить в интервале dЯt /2…dПt /2. Поскольку до начала плавления металла dЯt = 0, то интервал интегрирования dЯt /2…dПt /2 может быть принят для любого момента КТС при 0 ≤ ttСВ. Тогда, после подстановки в (3.50) зависимостей (3.47) и (3.49) количественное значение σСРt можно определить следующим интегральным выражением

,

из которого после вычисления интеграла с вышеуказанными переменными пределами интегрирования получаем формулу для приближенных количественных расчетов среднего значения нормальных напряжений σСРt в контакте деталь–деталь в любой момент t процесса формирования соединения

. (3.51)

Здесь, для момента t процесса формирования соединения, σДt — сопротивление деформации металла; dЯt и dПt — текущие значения диаметров, соответственно, ядра и уплотняющего пояска; Кσ – коэффициент, характеризующий неравномерность распределения в площади контакта нормальных напряжений по координате r, который для условий КТС следует принимать в пределах 0,25...0,5.

Согласно выражению (3.47) напряжения σ2Z на краю контакта при

во всех случаях стремятся к значениям сопротивления деформации металла
, а в центре контакта при
они растут с увеличением отношения диаметра контакта к толщине детали
:
. Это изменение неравномерности распределения напряжений по координате r, как следует из формулы (3.51), существенно влияет и на средние их значения σСРt в площади контакта. Так, минимальные значения
получаются при
, в случае отсутствия ядра расплавленного металла, или же при уменьшении ширины уплотняющего пояска, т. е. разности
после начала расплавления металла. Причем, это влияние увеличивается с уменьшением толщины свариваемых деталей вследствие увеличения отношения dПt /s.

Точность методики расчета σСРt до начала плавления металла представляется возможным оценить прямыми измерениями, поскольку при этом условии σСРt равно среднему давлению в контакте, которое можно определить делением усилия сжатия электродов FЭ на его площадь SК:
. Например, свариваемые детали сжимали между электродами на экспериментальной установке, описанной в п. 2.1.2 (рис. 2.7), и измеряли при этом контурную площадь контакта по методике угольных пленок (рис. 2.3). Затем определяли экспериментальные значения σСР и сравнивали их со значениями, рассчитанными по формуле (3.51). Пример такого сравнения для холодных контактов показан на рис. 3.23. Проведенные исследования показали удовлетворительную сходимость экспериментальных (показаны точками) и расчетных (кривая 1) значений напряжений в контактах.

Все, сказанное выше, не противоречит существующим представлениям о распределении нормальных напряжений в контактах.

3.4.2. Методика расчета давления расплавленного металла в ядре

Сведения о давлении расплавленного металла в ядре в литературе по сварке носят в основном предположительно-описательный характер. Это объясняется особенностями точечной сварки, не позволяющими измерить его экспериментально, и сложностью термодеформационных процессов в зоне сварки на стадии нагрева, которая затрудняет расчетное определение его величины.

Ниже изложена методика, разработанная [206, 218, 222] на основании приведенных исследований термодеформационных процессов, протекающих в зоне сварки на стадии нагрева, которая позволяет приближенно рассчитать давление расплавленного металла в ядре в любой момент процесса его формирования. Поставленная цель достигается тем, что реальный процесс пластической деформации металла, окружающего ядро, с определенными допущениями, в частности, об осесимметричности зоны сварки, сводится к решению задачи о деформировании сферической оболочки внутренним давлением Р (рис. 3.24).